
© The Author(s). 2023 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons. 
org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to 
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain 
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

ORIGINAL RESEARCH

lasers, light-emitting diode, and broadband light, in the visible and 
infrared spectrum (600–1070 nm) that has attracted special attention 
and its applications in dentistry and medicine is continuously 
growing. This therapy involves the use of low-level laser light to 
achieve hemostasis, eliminate periodontal infections, improve tissue 
development, regeneration, reduce pain, and promote wound 
healing.18 LLLT has been shown to enhance the proliferation of 
fibroblasts, endothelial cells, skeletal cells, keratinocytes, myoblasts, 
MSCs, and cardiac stem cells.19,20 Study by Bai et al. has shown that 
LLLT demonstrated osteogenesis and angiogenesis by enhanced 
vascularization in mouse bone marrow mesenchymal stem cells.21

In t r o d u c t i o n

The goal of periodontal therapy is the regeneration of lost tissues 
to their original form, architecture and function. This demands 
an abundance of regenerative cells, a conducive environment, 
and appropriate signals. The contribution of MSCs in the field of 
regenerative medicine and therapeutics is invaluable. MSCs have 
been identified to possess the potential for plastic adherence, 
self-renewing ability, and trilineage differentiation.1,2 They also 
possess inherent regenerative properties and maintain tissue 
homeostasis, apart from their immunomodulatory effects. They have 
also shown promise in the management of inflammatory disorders, 
autoimmune diseases, malignancies, and wounds, among others.3–7

Among the various sources of MSCs, GMSCs have been the most 
sought-after since their discovery in 2009. They are readily accessible, 
do not require invasive procurement procedures, nontumorigenic, 
and are expandable in nature. They have been proven successful 
in treating skin disorders, allergic disorders, inflammatory and 
autoimmune disorders, and aid in wound healing.8–17

When harvested from the bone marrow, MSCs make up 1-minute 
fraction of nucleated cells and account for approximately 0.001–
0.01% of all cells in each aspirate, depending on the technique. 
However, the therapeutic application of MSCs often requires a larger 
number of cells, which necessitates ex vivo expansion postharvest. 
As mammalian cells require 18–24 hours to double in cultures, there 
is always a risk of contamination.

Low-level laser therapy (LLLT) is a type of noninvasive, 
nonthermal therapy based on nonionizing light sources, including 
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Ab s t r ac t
Aim: The present ex vivo study was designed to assess the in vitro effects of low-level laser therapy (LLLT) on the viability and proliferation of 
gingival mesenchymal stem cells (GMSCs).
Materials and methods: Gingival explants were obtained from the gingival collar of teeth advised for minor gingival surgical procedures. Following 
processing, the GMSCs were irradiated with a 660 nm diode laser according to the following groups. Group I—1 J/cm2, 25 mW, and 40 seconds; 
group II—2 J/cm2, 50 mW, and 10 seconds; and group III—no irradiation (control group). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 
Bromide (MTT) assay was done to assess the rate of cell proliferation by measuring the absorbance values using a spectrometer. The mean 
values of absorbance in each of the three groups were considered for statistical analysis separately at 12 and 24 hours, respectively.
Results: The absorbance values of tetrazolium reduction were directly proportional to the rate of cell proliferation. Both groups I and II showed 
statistically significant differences in the absorbance rates from 12 to 24 hours after irradiation. Both at 12 and 24 hours after irradiation, group 
I exhibited a greater absorbance value compared to group II and this difference was statistically significant (p < 0.05).
Conclusion: Low-level laser therapy (LLLT) using 660 nm diode laser with different energies showed a positive effect on in vitro proliferation of 
GMSCs. The rate of proliferation was comparatively more significant at 12 hours and lower energy.
Clinical significance: This study provides a basis for the probable application of LLLT as a tool in tissue engineering using GMSCs.
Keywords: Biostimulation, Gingival mesenchymal stem cells, Low-level laser therapy.
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•	 CD90—catalog no. 555596.
•	 CD45—catalog no. 555482.
•	 CD34—catalog no. 550761.
•	 Human leukocyte antigen (HLA) D catalog no. 347363.
•	 HLA ABC catalog no. 555552 from BD Pharmingen to maintain 

a temperature of 4°C.

Fluorescein isothiocyanate (FITC), peridinin chlorophyll protein, 
or phycoerythrin (PE), in 250 µL of flow cytometry staining buffer, 
which contained sodium azide was conjugated for a duration of 
30 minutes at room temperature. Around 4 mL PBS was added to 
dilute the cells and then centrifuged. Resuspended with 600 µL of 
PBS containing 2% formaldehyde. Later it was analyzed using cell 
quest prosoftware with a flow cytometer. Immunoglobulin G (IgG) 
1, FITC, and IgG1 PE monoclonal antibodies were the isotypes used.

Cryopreservation
Media was removed from culture flasks and the cell monolayer was 
washed with PBS, trypsinized, and then centrifuged at 1200 rpm for 
5 minutes. The cell pellet thus obtained was gently tapped to loosen 
it, after which 1 mL of cryopreservation medium (90% FBS + 10% 
DMSO) was added to the pellet and gently pipetted to get a single-cell 
suspension. The suspension was then transferred to cryovials and kept 
in a cryocooler at −80 for 1 day, after which vials were transferred to 
liquid nitrogen canisters for long-term storage. The tissue explant 
was stored in complete media supplemented with antibiotic and 
antimycotic and transported on ice packs to the experimental lab.

Thawing
Cryovial was removed from the liquid nitrogen canister and 
immersed in a 37°C water bath for it to thaw. When a small chunk 
of ice was remaining, the vial was removed from the water bath, 
thoroughly cleaned with 70% ethanol, and then taken inside the 
hood, after which the vial was opened, and the contents were 
transferred to a conical falcon containing prewarmed media. The 
falcon was then centrifuged to pellet the cells. The pellet was 
then gently tapped to loosen it, resuspended in 1 mL media, and 
transferred to a flask containing an appropriate amount of media.

Process of Irradiation
The cells were seeded in the plates with α MEM + 10% FBS (modified 
eagles medium, Gibco catalog no. 10829-18, Australian FBS, hiMedia, 

Their effect on GMSCs has not been elucidated to date. The 
present ex vivo study was designed to assess the in vitro effects of 
LLLT on the viability and proliferation of GMSCs.

Mat e r ia  l a n d Me t h o d s

This exploratory, observational study was carried out at a tertiary 
dental hospital in South India.

Patient Selection
Patients, aged between 18 and 55 years, who were advised minor 
periodontal surgical procedures (gingivoplasty, gingivectomy, 
and crown lengthening) or tooth extraction at the outpatient 
department of a tertiary dental hospital in South India, were 
recruited for the study after obtaining informed consent. The 
study protocol was approved by the Institute Ethics Committee 
(JSSDCH/PGS/Ethical/2015-16).

Inclusion and Exclusion Criteria
Patients aged between 18 and 55 were selected for the study.

Smokers, lactating and pregnant women, and individuals with 
systemic diseases were excluded from the study.

Sample Size
A total of five patients were selected from the outpatient 
department of periodontology. Two explants were lost during the 
process and finally, three samples were subjected to the experiment.

Isolation and Culture of Gingival Tissue
Gingival explants were obtained from the gingival collar of 
teeth advised for extraction/gingivectomy/gingivoplasty/crown 
lengthening procedures using the No. 15 Bard Parker blade. 
The excised gingival tissue was washed in phosphate buffered 
solution (PBS) and Gibco. Later teased and digested overnight 
with 0.5 mg/mL collagenase blend type H (Sigma-Aldrich) at 37°C 
in an incubator. The digested tissue was washed with PBS and 
plated in Knockout Dulbecco’s Modified Eagles Medium (KO-DMEM, 
Gibco, catalog no. 10829-18) supplemented with 10% fetal 
bovine serum (FBS) (Australian FBS, hiMedia, catalog no. RM9951), 
Glutamax (Gibco, catalog no. 35050-061) and antibiotics namely, 
100 U/mL—1% penicillin, 100 µg/mL—1% streptomycin, and 1% 
amphotericin. After 24 hours, the floating debris was removed and 
the adherent cells were allowed to grow till confluence. They were 
passaged further with 0.25% trypsin-ethylenediaminetetraacetic 
acid and plated in a complete medium containing KO-DMEM, 
FBS 10%, Glutamax—1%, and antibiotic-antimycotic—1%. The flasks 
were incubated at 37°C in 5% carbon dioxide. The cells were allowed 
to grow for 3–4 days. They reached confluence; they were checked 
using phase contrast inverted microscopy. The basic medium was 
changed on a regular basis 3 times in 1 week.

Immunophenotype Characterization of Gingival Cells 
by Flow Cytometry
Flow cytometry was used to determine the immunophenotypic 
characteristics of GMSCs. Around 0.5 × 106 gingival cells were 
obtained from the third or fourth passage and incubated with 
specific monoclonal antibodies. (Fig. 1). The primary antibodies 
used were:

•	 A cluster of differentiation (CD) 73—catalog no. 550257.
•	 CD105—catalog no. 561443.

Fig. 1:  Graphical Representation of expression of stem cell markers of 
GMSCs isolated and cultivated
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intergroup comparison and post hoc correction at 24 hours, there 
were statistically significant differences in mean values, with group 
I showing the highest value, and group III showing the least value.

Both groups I and II showed statistically significant differences 
in the absorbance rates from 12 to 24 hours after irradiation. Both 
at 12 and 24 hours after irradiation, a group I exhibited greater 
absorbance value compared to group II, and this difference was 
statistically significant (p < 0.05) (Fig. 2). One-way ANOVA showed a 
statistically significant difference in both intragroup and intergroup 
comparison at 12 hours. However, at 24 hours, there was no 
statistically significant difference both in intragroup and intergroup 
comparison. (Tables 1, 2, and 3)

Di s c u s s i o n

For decades LLLT has been used for its bio-stimulative property. 
However, there is a continuous search for the best laser protocol to 
enhance its biostimulatory effect regarding low-energy irradiation. 
The laser energy is utilized by the mitochondrial respiratory 
chain to produce adenosine triphosphate, thereby increasing 
deoxyribonucleic acid activity, and the formation of ribonucleic 
acid and proteins.

Very few studies have assessed the effects of LLLT on dental 
stem cells and none have been done on GMSCs. GMSCs have 
been proven to be effective in the treatment of skin disorders, 
autoimmune and inflammatory disorders, periodontal diseases, and 
nerve regeneration.22–25 GMSCs exposure to LLLT may also enhance 
its biological properties. Hence this pilot study was conducted to 
explore the beneficial effects of LLLT on the proliferation of GMSCs. 
An extensive literature search revealed that this study is the first of its 
kind to evaluate the effect of LLLT on the proliferation of GMSCs and 
compare two energy densities at 12 and 24 hours. The application of 
both energy densities of LLLT on GMSCs has been shown to increase 
their proliferation rates both at 12 and 24 hours, the intergroup 
difference being statistically significant in comparison to the control 
group at each time point. These findings were in accordance with 
the results of the studies that have revealed increased proliferation 
of stem cells from human exfoliated deciduous teeth, human 
periodontal ligament stem cells, and dental pulp stem cells with 
the use of a 660 nm laser in a wide range of energies.26–31 laser 
wavelengths of red or near-infrared (600–1200 nm) are beneficial 
for biological effects and energy fluences of 0.05–10 J/cm2 to induce 

catalog no. RM 9951) and were allowed to attach for 24 hours. The 
plates were covered with black cardboard with holes created only 
for the test wells. Prior to irradiation, the medium was changed to 
fresh 1% FBS. Following this, the required plates were irradiated 
with a 660 nm diode laser following block randomization and group 
categorization as follows according to the LLLT energy density.

•	 Group I: 1 J/cm2, 25 mW, and 40 seconds.
•	 Group II: 2 J/cm2, 50 mW, and 10 seconds.
•	 Group III: No irradiation (control group).

The probe tip was kept perpendicular and 1 mm away from the 
well to be covering a spot of 0.07 cm2.

MTT Assay
The 3-(4,5-dimethylthiazol-2-yl)—2,5-diphenyl-2H-tetrazolium 
bromide (MTT) assay was done to assess the rate of cell proliferation 
by measuring the absorbance values of tetrazolium reduction to a 
purple-colored formazan dye using a spectrometer.

The mean values of absorbance in each of the three groups 
were considered for statistical analysis separately at 12 hours and 
24 hours, respectively.

Statistical Analysis
Statistical analysis was performed using Statistical Package for the 
Social Sciences 23 statistical software. The cell proliferation data 
were analyzed by two-way analysis of variance (ANOVA), followed 
by Tukey’s test. Differences were considered significant at p < 0.05. 
Data were expressed as mean value and standard deviation.

Re s u lts

The absorbance values of tetrazolium reduction with MTT assay 
were directly proportional to the rate of cell proliferation.

At 12 hours, the tests of between-subjects effects revealed 
that there was a significant difference between groups I, II, and 
III. The mean values in groups I, II, and III at 12 hours were 1.364 ±  
0.274, 1.251 ± 0.112, and 1.104 ± 0.061, respectively. On pairwise 
intergroup comparison and post hoc correction at 12 hours, there 
was a statistically significant difference in mean values, with group I 
showing the highest value (1.364 ± 0.274) and group III showing the 
least value (1.104 ± 0.061) with a p-value of 0.000. 

The mean values in groups I, II, and III at 24 hours were, 
respectively, 1.272 ± 0.256, 1.193 ± 0.248, and 1.132 ± 0.265. On pairwise 

Figs 2A and B:  Absorbance rates at 12 and 24 hours postirradiation
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basis for future expansive research with financial support. However, 
stem cell research with periodontal ligament cells has been done 
with a smaller sample size.35 In summary, our study substantiated 
that LLLT with different energy densities has a positive influence 
on in vitro viability and proliferation rates of GMSCs and may be a 
useful tool for tissue engineering. It did provide a basis for future 
researchers on GMSCs treatment with LLLT. However, further studies 
are needed to standardize the laser parameters to improve the 
yield of GMSCs cells in culture and to understand and explore the 
possibility of sustained effects of biostimulation on GMSCs, which 
would open a surfeit of therapeutic regenerative opportunities. 
Innovative therapies with the added benefit of LLLT and stem 
cell regeneration can provide a plethora of treatment modalities 
for human diseases naturally. The combination of light-based 
biomodulation of regenerative cells and their therapeutic potential 
can find their future applications in photo diagnosis, phototherapy, 
and mesenchymal stem cell-based regenerative therapies.

Co n c lu s i o n

Low-level laser therapy (LLLT) using 660 nm diode laser with 
different energies showed a positive effect on in vitro proliferation 
of GMSCs. The rate of proliferation was comparatively more 
significant at 12 hours and low-energy. This study provides a basis 
on which further work on repetitive doses of irradiation can be 
investigated to exploit its benefits. LLLT can be a beneficial tool in 
tissue engineering using GMSCs.

cell proliferation, contrary to energies greater than 10 J/cm2 being 
antiproliferative.32 This study is in accordance with the above 
study as 660 nm wavelength was used and proved to be beneficial 
for the proliferation of GMSCs. Studies have demonstrated that 
energy densities ranging from 0.5–4 J/cm2 have been more 
effective in stimulating cellular growth.33 The results of our study 
demonstrated that the lower energy density showed better results 
in comparison to the higher energy density, which was more 
significant at 12 hours. This revelation could speculate the criticality 
of choosing appropriate energy densities to provide the optimum 
desired effect and the sensitivity of MSCs to biomodulation by 
LLLT. Research has shown an added benefit in cellular proliferation 
with a 2nd-time application.29,34 Our study showed a significant 
biostimulatory effect at 12 hours for both groups; however, the 
same was not maintained at 24 hours, which could be indicative 
of endorsing the need for the consequent application to maintain 
the biostimulatory effects. Further, the irradiation at a lower energy 
density seemed to produce a greater biostimulatory effect, the 
difference being statistically significant. This is in accordance with 
the study of Fernandes et  al., who reported that the results of 
MTT assay in their study showed the group with the lowest dose 
of 1.2 J/cm2 demonstrated more favorable results on cell viability 
as much as 6–24 hours after irradiation compared with the others 
groups.35 However, the researchers also used a crystal violet assay 
to assess the cell viability, which could be one of the limitations of 
our study. As ours is a novel pilot study, a smaller sample size and 
assessment with the MTT test alone were undertaken to provide a 

Table 1:  Two-way ANOVA for energy levels and laser groups at 12 hours. Tests of between-subjects effects

Source
Type III Sum 
of squares

Degree of 
freedom Mean square F Significance Partial eta squared

Corrected model 0.742a 5 0.148 67.042 0.000* 0.949
Intercept 33.188 1 33.188 14994.739 0.000* 0.999
laser 0.286 2 0.143 64.591 0.000* 0.878
energy 0.373 1 0.373 168.328 0.000* 0.903
laser*energy 0.167 2 0.083 37.709 0.000* 0.807
Error 0.040 18 0.002

Total 35.669 24

Corrected total 0.782 23

R squared = 0.949 (adjusted R squared = 0.935). There is a significant difference between group I and II as well as low, high laser and control group at 12 
hours; *p = 0.000 is very highly significant

Table 2:  Mean and standard deviation for lasers at 12 hours

Laser Mean Standard error

95% confidence interval

Lower bound Upper bound

1.00 1.364 0.019 1.323 1.404
2.00 1.251 0.019 1.211 1.292

3.00 1.104 0.014 1.075 1.133

1, low laser; 2, high laser; 3, control

Table 3:  Univariate test for laser at 12 hours

Sum of squares Degree of freedom Mean square F Significance Partial eta squared

Contrast 0.286 2 0.143 64.591 0.000* 0.878

Error 0.040 18 0.002

The F tests the effect of laser. This test is based on the linearly independent pairwise comparisons among the estimated marginal means. There is a very 
high significant difference between lasers and the control group at 12 hours. *p = 0.000
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