Citation Information :
Mohan KS, Ramamurthy J. Comparison of Efficacy of Lasers with Mechanical and Chemical Decontamination of Titanium Surfaces/Disks: A Systematic Review. World J Dent 2024; 15 (12):1083-1091.
Aim: To compare the efficacy of laser, laser plus photodynamic therapy, and mechanical or chemical methods in the decontamination of titanium surfaces or disks regarding colony-forming units (CFUs) and real-time quantitative polymerase chain reaction (RT-qPCR).
Materials and methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. An extensive search was conducted using the PubMed, Cochrane, Scopus, Web of Science, and Google Scholar databases. In vitro studies reporting the efficacy of lasers in decontaminating titanium surfaces or disks from January 2000 to December 2023 were included. Data on author, year of publication, country, sample size, details on intervention, comparison, measured outcomes, results, and conclusion of the included studies were collected. The quality of the included studies was assessed using the Quality Assessment Tool for In Vitro Studies (QUIN Tool).
Results: A total of eight in vitro studies with full text were included. The methodology of most included studies presented a moderate risk of bias. Approximately, two studies used a diode laser in continuous mode, and one study used it in pulsed mode for decontamination, while five studies used Er:YAG or Er:Cr:YSGG lasers. A total of 361 titanium surfaces or disks showed that a diode laser of 810 nm wavelength in pulsed and continuous wave mode, an Er:YAG laser of 100 mJ/pulse, and an Er:Cr:YSGG laser of 1.5 W, 30 Hz, with repeated exposures, along with its combination with photodynamic therapy (PDT), achieved a 99% to 100% reduction in CFUs of gram-positive and gram-negative bacterial species. Additionally, these methods demonstrated a significant reduction in rRNA and genome counts in RT-qPCR analysis.
Conclusion: Diode lasers, Er:YAG, and Er:Cr:YSGG lasers of different wavelengths and energy levels, and their combination with photodynamic therapy, can be a promising alternative for reducing colony-forming unit, rRNA, and genome counts.
Clinical significance: The decontamination process of lasers is similar to chemical decontamination and superior to mechanical decontamination on titanium surfaces, with increased host cell attachment, wettability, and osteoconduction. Moreover, as they do not affect biocompatibility, they make a perfect nonsurgical alternative for the treatment of peri-implantitis. However, clinical human trials following standard protocols are needed to assess their effectiveness on CFUs and RT-qPCR in preventing and treating peri-implantitis.
Pandey C, Rokaya D, Bhattarai BP. Contemporary concepts in osseointegration of dental implants: a review. BioMed Res Int 2022;2022:6170452. DOI: 10.1155/2022/6170452
Ramachandra SS, Patil M, Mehta DS. Implants placed into extraction sockets: a literature review. Dent Implantol Update 2009;20(2):1–8.
Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials 2015;8:932–958. DOI: 10.3390/ma8030932
Khurshid Z, Hafeji S, Tekin S, et al. Titanium, zirconia, and polyetheretherketone (PEEK) as a dental implant material. In: Zafar MS, Khurshid Z, Khan AS, Najeeb S, Sefat F, editors. Dental Implants. Cambridge, UK: Woodhead Publishing; 2020.
Gahlert M, Burtscher D, Grunert I, et al. Failure analysis of fractured dental zirconia implants. Clin Oral Implant Res 2012;23:287–293. DOI: 10.1111/j.1600-0501.2011.02206.x
Gowda EM, Iyer SR, Verma K, et al. Evaluation of PEEK composite dental implants: a comparison of two different loading protocols. J Dent Res Rep 2018.
Safi IN, Hussein BMA, Aljudy HJ, et al. Effects of long durations of RF–magnetron sputtering deposition of hydroxyapatite on titanium dental implants. Eur J Dent 2021;15:440–447. DOI: 10.1055/s-0040-1721314
Zhang W, Zhang S, Liu H, et al. Effects of surface roughening on antibacterial and osteogenic properties of Ti-Cu alloys with different Cu contents. J Mater Sci Technol 2021;88:158–167. DOI: 10.1016/j.jmst.2021.01.067
Barberi J, Spriano S. Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials 2021;14:1590. DOI: 10.3390/ma14071590
Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc 2013;13:2–6. DOI: 10.1007/s13191-013-0252-z
Rausch MA, Shokoohi-Tabrizi H, Wehner C, et al. Impact of implant surface material and microscale roughness on the initial attachment and proliferation of primary human gingival fibroblasts. Biology 2021;10:356. DOI: 10.3390/biology10050356
Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 2014;10:2907–2918. DOI: 10.1016/j.actbio.2014.03.032
Nychka J, Gentleman M. Implications of wettability in biological materials science. JOM 2010;62:39–48. DOI: 10.1007/s11837-010-0107-6
Albertini M, Fernandez-Yague M, Lázaro P, et al. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces. Med Oral Patol Oral Cir Bucal 2015;20:e316–e325. DOI: 10.4317/medoral.20353
Hong J, Kurt S, Thor A. A hydrophilic dental implant surface exhibit thrombogenic properties in vitro. Clin Implant Dent Relat Res 2013;15:105–112. DOI: 10.1111/j.1708-8208.2011.00362.x
Redžepagić-Vražalica L, Mešić E, Pervan N, et al. Impact of implant design and bone properties on the primary stability of orthodontic mini-implants. Appl Sci 2021;11:1183. DOI: 10.3390/app11031183
Ivanova V, Chenchev I, Zlatev S, et al. Correlation between primary, secondary stability, bone density, percentage of vital bone formation and implant size. Int J Environ Res Public Health 2021;18:6994. DOI: 10.3390/ijerph18136994
Palermo A, Giannotti L, Di Chiara Stanca B, et al. Use of CGF in oral and implant surgery: from laboratory evidence to clinical evaluation. Int J Mol Sci 2022;23:15164. DOI: 10.3390/ijms232315164
Simonpieri A, Del Corso M, Vervelle A, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol 2012;13(7):1207–1230. DOI: 10.2174/138920112800624391
Jeon JH, Kim MJ, Yun PY, et al. Randomized clinical trial to evaluate the efficacy and safety of two types of sandblasted with large-grit and acid-etched surface implants with different surface roughness. J Korean Assoc Oral Maxillofac Surg 2022;48:225–231. DOI: 10.5125/jkaoms.2022.48.4.225
Bereznai M, Pelsöczi I, Tóth Z, et al. Surface modifications induced by Ns and Sub-Ps excimer laser pulses on titanium implant material. Biomaterials 2003;24:4197–4203. DOI: 10.1016/s0142-9612(03)00318-1
Matos GRM. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg 2021;20(1):1–4. DOI: 10.1007/s12663-020-01437-5
Lorusso F, Conte R, Inchingolo F, et al. Survival rate of zygomatic implants for fixed oral maxillary rehabilitations: a systematic review and meta-analysis comparing outcomes between zygomatic and regular implants. Dent J (Basel) 2021;9:38. DOI: 10.3390/dj9040038
Zhou J, Wang X, Zhao L. Antibacterial, angiogenic, and osteogenic activities of Ca, P, Co, F, and Sr compound doped titania coatings with different Sr content. Sci Rep 2019;9:14203. DOI: 10.1038/s41598-019-50496-3
Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 2014;5:229–241. DOI: 10.1177/2042098614554919
Smeets R, Henningsen A, Jung O, et al. Definition, etiology, prevention and treatment of peri-implantitis: a review. Head Face Med 2014;10:34. DOI: 10.1186/1746-160X-10-34
López-Valverde N, Macedo-de-Sousa B, López-Valverde A, et al. Effectiveness of antibacterial surfaces in osseointegration of titanium dental implants: a systematic review. Antibiotics 2021;10:360. DOI: 10.3390/antibiotics10040360
Schwarz F, Schmucker A, Becker J. Efficacy of alternative or adjunctive measures to conventional treatment of peri-implant mucositis and peri-implantitis: a systematic review and meta-analysis. Int J Implant Dent 2015;1:22–29. DOI: 10.1186/s40729-015-0023-1
Baima G, Citterio F, Romandini M, et al. Surface decontamination protocols for surgical treatment of peri-implantitis: a systematic review with meta-analysis. Clin Oral Implants Res 2022;33(11):1069–1086. DOI: 10.1111/clr.13992
Akram Z, Al-Shareef SA, Daood U, et al. Bactericidal efficacy of photodynamic therapy against periodontal pathogens in periodontal disease: a systematic review. Photomed Laser Surg 2016;34:137. DOI: 10.1089/pho.2015.4076
Natto ZS, Aladmawy M, Levi PA Jr, et al. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants 2015;30(2):338–345. DOI: 10.11607/jomi.3846
AlMarzooqi AMA, Ramachandra SS, Kukreja BJ, et al. Treatment of peri-implant diseases using lasers: a systematic review. Open Dent J 2023;17(1):1–11. DOI: 10.2174/18742106-v17-e230517-2022-143
Ting M, Alluri LSC, Sulewski JG, et al. Laser treatment of peri-implantitis: a systematic review of radiographic outcomes. Dent J (Basel) 2022;10(2):20–28. DOI: 10.3390/dj10020020
Adams G. A beginner's guide to RT-PCR, qPCR, and RT-qPCR. Biochem (Lond). 2020;42(3):48–53.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. DOI: 10.1136/bmj.n71
Sheth VH, Shah NP, Jain R, et al. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J Prosthet Dent 2024;131(6):1038–1042. DOI: 10.1016/j.prosdent.2022.05.019
Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions – AHRQ and the effective health-care program. J Clin Epidemiol 2010;63:513–523. DOI: 10.1016/j.jclinepi.2009.03.009
Schwarz F, Sculean A, Rothamel D, et al. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 2005;16(1):44–52. DOI: 10.1111/j.1600-0501.2004.01051.x
Schwarz F, Bieling K, Bonsmann M, et al. Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clin Oral Investig 2006;10(4):279–288. DOI: 10.1007/s00784-006-0070-3
Schwarz F, Sahm N, Iglhaut G, et al. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol 2011;38(3):276–284. DOI: 10.1111/j.1600-051X.2010.01690.x
Persson GR, Roos-Jansåker AM, Lindahl C, et al. Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 2011;82(9):1267–1278. DOI: 10.1902/jop.2011.100660
Schwarz F, John G, Mainusch S, et al. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination: a two-year clinical follow-up report. J Clin Periodontol 2012;39:789–797. DOI: 10.1111/j.1600-051X.2012.01867.x
Schwarz F, Hegewald A, John G, et al. Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol 2013;40(10):962–967. DOI: 10.1111/jcpe.12143
Strever JM, Lee J, Ealick W, et al. Erbium, chromium:yttrium-scandium-gallium-garnet laser effectively ablates single-species biofilms on titanium disks without detectable surface damage. J Periodontol 2017;88(5):484–492. DOI: 10.1902/jop.2016.160529
Scarano A, Lorusso F, Inchingolo F, et al. The effects of erbium-doped yttrium aluminum garnet laser (Er: YAG) irradiation on sandblasted and acid-etched (SLA) titanium, an in vitro study. Materials (Basel) 2020;13(18):4174. DOI: 10.3390/ma13184174
Park SH, Kim OJ, Chung HJ, et al. Effect of a Er, Cr:YSGG laser and a Er:YAG laser treatment on oral biofilm-contaminated titanium. J Appl Oral Sci 2020;28:e20200528. DOI: 10.1590/1678-7757-2020-0528
AlMoharib HS, Steffensen B, Zoukhri D, et al. Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces: an in vitro study. J Periodontol 2021;92(11):1613–1621. DOI: 10.1002/JPER.20-0765
Polak D, Shani-Kdoshim S, Alias M, et al. The in vitro efficacy of biofilm removal from titanium surfaces using Er:YAG laser: comparison of treatment protocols and ablation parameters. J Periodontol 2022;93(1):100–109. DOI: 10.1002/JPER.19-0574
Wang CY, Lee BS, Jhang YT, et al. Er:YAG laser irradiation enhances bacterial and lipopolysaccharide clearance and human gingival fibroblast adhesion on titanium discs. Sci Rep 2021;11(1):23954. DOI: 10.1038/s41598-021-03434-1
Assery N, Alomeir N, Zeng Y, et al. The effect of Er:YAG laser treatment on biofilm formation on titanium and zirconia disc surfaces. J Periodontol 2023;94(3):344–353. DOI: 10.1002/JPER.22-0243
Azzeh MM. Er,Cr:YSGG laser-assisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol 2008;79(10):2000–2005. DOI: 10.1902/jop.2008.080045
Badran Z, Bories C, Struillou X, et al. Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol 2011;37 Spec No:212–217. DOI: 10.1563/AAID-JOI-D-09-00145.1
Wang J, Geng T, Wang Y. et al. Efficacy of antibacterial agents combined with erbium laser and photodynamic therapy in reducing titanium biofilm vitality: an in vitro study. BMC Oral Health 2023;23:32–35. DOI: 10.1186/s12903-023-02730-8
Deppe H, Horch HH, Neff A. Conventional versus CO2 laser-assisted treatment of peri-implant defects with the concomitant use of pure-phase β-tricalcium phosphate: a 5-year clinical report. Int J Oral Maxillofac Implants 2007;22(1):79–86.
Romanos GE, Nentwig GH. Regenerative therapy of deep peri-implant infrabony defects after CO2 laser implant surface decontamination. Int J Periodontics Restorative Dent 2008;28(3):245–255.
Sennhenn-Kirchner S, Klaue S, Wolff N, et al. Decontamination of rough titanium surfaces with diode lasers: microbiological findings on in vivo grown biofilms. Clin Oral Implants Res 2007;18(1):126–132. DOI: 10.1111/j.1600-0501.2006.01298.x
Giannelli M, Landini G, Materassi F, et al. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study. Lasers Med Sci 2016;31(8):1613–1619. DOI: 10.1007/s10103-016-2025-5
Eick S, Meier I, Spoerlé F, et al. In vitro-activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS One 2017;12(1):e0171086. DOI: 10.1371/journal.pone.0171086
Huang P, Chen X, Chen Z, et al. Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral Health 2021;21(1):649. DOI: 10.1186/s12903-021-02006-z
Morelato L, Budimir A, Smojver I, et al. A novel technique for disinfection treatment of contaminated dental implant surface using 0.1% riboflavin and 445 nm diode laser-an in vitro study. Bioengineering (Basel) 2022;9(7):308. DOI: 10.3390/bioengineering9070308
Stein JM, Conrads G, Abdelbary MMH, et al. Antimicrobial efficiency and cytocompatibility of different decontamination methods on titanium and zirconium surfaces. Clin Oral Implants Res 2023;34(1):20–32. DOI: 10.1111/clr.14014
Vaddamanu SK, Vyas R, Kavita K, et al. An in vitro study to compare dental laser with other treatment modalities on biofilm ablation from implant and tooth surfaces. J Pharm Bioallied Sci 2022;14(Suppl 1):S530–S533. DOI: 10.4103/jpbs.jpbs_98_22
Kottmann L, Franzen R, Conrads G, et al. Effect of Er,Cr:YSGG laser with a side-firing tip on decontamination of titanium disc surface: an in vitro and in vivo study. Int J Implant Dent 2023;9(1):7. DOI: 10.1186/s40729-023-00469-z
Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 2015;30:561–566. DOI: 10.1007/s10103-013-1361-y