World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 7 ( July, 2024 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Cytotoxicity and Characterization of Strontium Phosphate–Chitosan Nanoparticle Coating on Magnesium for Bioimplant Applications: A Preliminary In Vitro Study

Sneha Devarakonda, Aravind Kumar Subramanian, Pugalmani Sivashanmugam

Keywords : Bioimplant, Bioresorbable, Chitosan, Implant, Magnesium, Strontium, Sustainable

Citation Information : Devarakonda S, Subramanian AK, Sivashanmugam P. Evaluation of Cytotoxicity and Characterization of Strontium Phosphate–Chitosan Nanoparticle Coating on Magnesium for Bioimplant Applications: A Preliminary In Vitro Study. World J Dent 2024; 15 (7):572-578.

DOI: 10.5005/jp-journals-10015-2389

License: CC BY-NC 4.0

Published Online: 04-10-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: The aim of this study was to evaluate the cytotoxicity of a strontium phosphate–chitosan (Sr-P-CS) coated magnesium (Mg) substrate to study its potential use as a bioimplant. Materials and methods: The present study coated pure Mg substrate with Sr-P-CS coating. The Sr-P-CS-coated Mg samples were tested for contact angle measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and infrared spectroscopy (IR). Uncoated Mg samples were used as a control to evaluate all of these parameters. The cytotoxicity of the material was assessed using MG63 cell lines. Untreated cells were used as a negative control, and both cell samples were compared for cell viability and variations in cell morphology. Results: The presence of a coating on the substrate was confirmed by EDAX analysis, and its elemental composition was verified by IR spectroscopy. Sr-P-CS coated surface displayed a higher contact angle (106.8°), while the uncoated substrate displayed 74.2°. AFM showed decreased surface roughness of the coated sample when compared to uncoated Mg. Cell viability of the Sr-P-CS-coated Mg ranged between 97 and 98%, indicating low toxicity in biological tissue. Conclusion: Strontium phosphate–chitosan (Sr-P-CS) coating on Mg substrate indicated a greater contact angle, with homogenous surface topography, significant biocompatibility, and low toxicity in comparison to the uncoated Mg substrate, suggesting its potential use as a bioimplant material. Clinical significance: The coating of Sr-P-CS on Mg substrate has demonstrated improved surface properties and low cytotoxicity. Further evaluation of this material under static and dynamic mechanical stresses could help us understand its behavior in a biologically active environment and highlight its potential as a novel bioimplant material.


PDF Share
  1. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983;17(4):266–269.
  2. Safiya S, Manjunath G. Mini-implant materials: an overview. IOSR J Dent Med Sci 2013;7:15–20. DOI: 10.9790/0853-0721520
  3. Kalaiyarasan M, Ramya R, Pratibha R. Biosynthesis of Vitex-negundo mineralized hydroxyapatite coating on Ti for implant applications. Mater Letter 2023;351:135061. DOI: 10.1016/j.matlet.2023.135061
  4. Wang JY, Wicklund BH, Gustilo RB, et al. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials 1996;17(23):2233–2240. DOI: 10.1016/0142-9612(96)00072-5
  5. Sharifianjazi F, Khaksar S, Esmaeilkhanian A, et al. Advancements in fabrication and application of chitosan composites in implants and dentistry: a review. Biomolecules 2022;12(2). DOI: 10.3390/biom12020155
  6. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21(24):2589–2598. DOI: 10.1016/s0142-9612(00)00126-5
  7. Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 2016;4(3):411–427. DOI: 10.21474/IJAR01
  8. Sanchez VC, Jachak A, Hurt RH, et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 2012;25(1):15–34. DOI: 10.1021/tx200339h
  9. Hu D, Ren Q, Li Z, et al. Chitosan-based biomimetically mineralized composite materials in human hard tissue repair. Molecules 2020;25(20). DOI: 10.3390/molecules25204785
  10. Mao H, Wei C, Gong Y, et al. Mechanical and water-resistant properties of eco-friendly chitosan membrane reinforced with cellulose nanocrystals. Polymers (Basel) 2019;11(1). DOI: 10.3390/polym11010166
  11. Díez-Pascual AM. Biopolymer composites: synthesis, properties, and applications. Int J Mol Sci 2022;23(4). DOI: 10.3390/ijms23042257
  12. Zhijiang C, Ping X, Cong Z, et al. Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal. Cellulose 2018;25:5123–5137. DOI: 10.1007/s10570-018-1914-0
  13. Zhang W, Shen Y, Pan H, et al. Effects of strontium in modified biomaterials. Acta Biomater 2011;7(2):800–808. DOI: 10.1016/j.actbio.2010.08.031
  14. Cheshmedzhieva D, Ilieva S, Permyakov EA, et al. Ca(2+)/Sr(2+) selectivity in calcium-sensing receptor (casr): implications for strontium's anti-osteoporosis effect. Biomolecules 2021;11(11). DOI: 10.3390/biom11111576
  15. Jacobs JJ, Hallab NJ, Skipor AK, et al. Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res 2003;(417):139–147. DOI: 10.1097/01.blo.0000096810.78689.62
  16. Kalaiyarasan M, Bharathi SM, Rajendran N, et al. Synergetic effect of Fe/Ag ions incorporated HAp on AZ31 Mg alloy to improve corrosion resistance and osteogenic activity. J Alloy Comp 2023;960:170711. DOI: 10.1016/j.jallcom.2023.170711.
  17. Kannan S, Madhu K, Nallaiyan R. Formulation of magnesium conversion coating with herbal extracts for biomedical applications. J Bio Tribo Corros 2022;8(114). DOI: 10.1007/s40735-022-00715-8
  18. Hänzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater 2010;6(5):1824–1833. DOI: 10.1016/j.actbio.2009.10.008
  19. Raman RKS, Choudhary L. Cracking of magnesium-based biodegradable implant alloys under the combined action of stress and corrosive body fluid: a review. Emerg Mater Res 2013;2:219–228. DOI: 10.1680/emr.13.00033
  20. Song G. Control of biodegradation of biocompatible magnesium alloys. Corros Sci 2007;49(4):1696–1701. DOI: 10.1016/j.corsci.2007.01.001
  21. Sankara Narayanan TSN, Park IS, Lee MH. Surface Modification of Magnesium and its Alloys for Biomedical Applications. Volume II: Modification and Coating Techniques. Woodhead Publishing, United Kingdom; pp. 433–441.
  22. Saranya K, Kalaiyarasan M, Agilan P, et al. Biofunctionalization of Mg implants with gadolinium coating for bone regeneration. Surfac Interfac 2022;31:101948. DOI: 10.1016/j.surfin.2022.101948
  23. Saranya K, Bhuvaneswari S, Chatterjee S, et al. Biocompatible gadolinium-coated magnesium alloy for biomedical applications. J Mater Sci 2020;55:11582–11596. DOI: 10.1007/s10853-020-04742-z
  24. Suzuki EY, Suzuki B. Placement and removal torque values of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 2011;139(5):669–678. DOI: 10.1016/j.ajodo.2010.11.017
  25. Qi Z, Zhao Y, Ji M, et al. Preparation of chitosan/phosphate composite coating on Mg alloy (AZ31B) via one-step chemical conversion method. Res Chem Mater 2023;2(1):39–48. DOI: 10.1016/j.recm.2022.10.001.
  26. Fang H, Wang C, Zhou S, et al. Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation. Corros Sci 2020;168:108466. DOI: 10.1016/j.corsci.2020.108466.
  27. Bakhsheshi-Rad HR, Hamzah E, Ying WS, et al. Improved bacteriostatic and anticorrosion effects of polycaprolactone/chitosan coated magnesium via incorporation of zinc oxide. Materials (Basel) 2021;14(8). DOI: 10.3390/ma14081930
  28. Böstman O. Economic considerations on avoiding implant removals after fracture fixation by using absorbable devices. Scand J Soc Med 1994;22(1):41–45. DOI: 10.1177/140349489402200107
  29. Muzzarelli RA, Mattioli-Belmonte M, Tietz C, et al. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 1994;15(13):1075–1081. DOI: 10.1016/0142-9612(94)90093-0
  30. López-Valverde N, López-Valverde A, Cortés MP, et al. Bone quantification around chitosan-coated titanium dental implants: a preliminary study by micro-ct analysis in jaw of a canine model. Front Bioeng Biotechnol 2022;10:858786. DOI: 10.3389/fbioe.2022.858786
  31. Ribeiro MP, Morgado PI, Miguel SP, et al. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C Mater Biol Appl 2013;33(5):2958–2966. DOI: 10.1016/j.msec.2013.03.025
  32. Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26(1):1–21. DOI: 10.1016/j.biotechadv.2007.07.009
  33. Wassmann T, Kreis S, Behr M, et al. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent 2017;3(1):32. DOI: 10.1186/s40729-017-0093-3
  34. Mekayarajjananonth T, Winkler S. Contact angle measurement on dental implant biomaterials. J Oral Implantol 1999;25(4):230–236. DOI: 10.1563/1548-1336(1999)025<0230:CAMODI>2.3.CO;2
  35. Bumgardner JD, Chesnutt BM, Yuan Y, et al. The integration of chitosan-coated titanium in bone: an in vivo study in rabbits. Implant Dent 2007;16(1):66–79. DOI: 10.1097/ID.0b013e3180312011
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.