Functional Group Delineation and Double Bond Conversion of Dental Poly(methylmethacrylate) Resin Conjugated with a Spiroacetal Cross-linker: An In Vitro Characterization Research
Chandramohan Ravivarman, Rajkumar Daisy, Pradeep P Elango, Muthupettai V Srikanth
Keywords :
Copolymerization, Cross-link, Denture copolymer, Double bond conversion, Spiroacetal
Citation Information :
Ravivarman C, Daisy R, Elango PP, Srikanth MV. Functional Group Delineation and Double Bond Conversion of Dental Poly(methylmethacrylate) Resin Conjugated with a Spiroacetal Cross-linker: An In Vitro Characterization Research. World J Dent 2024; 15 (4):356-361.
Aim: To characterize and identify the functional groups as evidence for copolymerization (CP) and evaluate the double bond conversion (DBC) of a novel poly(methylmethacrylate) [P(MMA)] copolymer with a spiroacetal cross-linker at 10 and 20% concentrations using Fourier-transform infrared (FTIR) spectroscopy.
Materials and methods: The in vitro research consists of three groups—a control group G0 (without spiroacetal cross-linker) and two investigational groups G10 and G20 with spiroacetal cross-linker at 10 and 20 wt% concentration, respectively. This spiroacetal cross-linker was added to the powder-liquid mixture during manipulation at the predetermined trial concentrations. The CP and DBC% were determined and analyzed using infrared spectroscopy. The obtained DBC% values were submitted for statistical evaluation.
Results: Incorporation of the spiroacetal cross-linker in the P(MMA) resulted in a new denture base copolymer through CP which was ascertained by the appearance of new peaks between 1075 and 1190/cm in both investigational groups. Nevertheless, the new copolymer exhibited statistically greater DBC than the P(MMA). The mean DBC% of the control, G10, and G20 groups were 62.88, 69.52, and 83.00%, respectively.
Conclusion: The incorporated spiroacetal cross-linking comonomer successfully copolymerized with the denture base acrylic resulting in a new copolymer exhibiting high DBC%.
Clinical significance: Existing drawbacks concerning the physicomechanical and biological properties of denture base resin can be mitigated by the new denture base copolymer containing spiroacetal cross-linker. This would benefit the elderly patient by providing prostheses with better mechanical strength, clinical longevity, and quality of life.
Brożek R, Koczorowski R, Rogalewicz R, et al. Effect of denture cleansers on chemical and mechanical behavior of selected soft lining materials. Dent Mater 2011;27(3):281–290. DOI: 10.1016/j.dental.2010.11.003
Saitoh S, Sasaki K, Nezu T, et al. Viscoelastic behavior of commercially available tissue conditioners under compression. Dent Mater J 2010;29(4):461–468. DOI: 10.4012/dmj.2009-130
Takahashi Y, Hamanaka I, Shimizu H. Flexural properties of denture base resins subjected to long-term water immersion. Acta Odontol Scand 2013;71(3-4):716–720. DOI: 10.3109/00016357.2012.715196
Andrzejewska E. Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 2001;26(4):605–665. DOI: 10.1016/S0079-6700(01)00004-1
Hamouda IM, Makke A. Heat-cured acrylic resin reinforcement with aluminum oxide: degree of conversion, monomer release and flexural strength. Dent Oral Maxillofac Res 2020;6:1–5. DOI: 10.15761/DOMR.1000359
Koroglu A, Ozdemir T, Pamir AD, et al. Residual acrylic monomer content of denture base resins with different fiber systems. J Appl Polym Sci 2012;125(1):471–476. DOI: 10.1002/app.35671
Bartoloni JA, Murchison DF, Wofford DT, et al. Degree of conversion in denture base materials for varied polymerization techniques. J Oral Rehabil 2000;27(6):488–493. DOI: 10.1046/j.1365-2842.2000.00536.x
Amin WM. Detection and estimation of monomeric eluates from poly(methyl methacrylate) resin of various polymerisation modes. Polym Polym Compos 2007;15(7):553–560. DOI: 10.1177/096739110701500705
Alawi MA, Amin WM. Effect of ageing on monomer elution from poly(methyl methacrylate) resin under simulated intra-oral conditions. Fresenius Environ Bull 2007;16(4):408–414.
Woelfel JB. Newer materials and techniques in prosthetic resin materials. Dent Clin North Am 1971;15(1):67–79. PMID: 4923235.
Vilaplana J, Romaguera C, Cornellana F. Contact dermatitis and adverse oral mucous membrane reactions related to the use of dental prostheses. Contact Dermatitis 1994;30(2):80–84. DOI: 10.1111/j.1600-0536.1994.tb00568.x
Lovell LG, Lu H, Elliott JE, et al. The effect of cure rate on the mechanical properties of dental resins. Dent Mater 2001;17(6):504–511. DOI: 10.1016/s0109-5641(01)00010-0
Sasaki H, Hamanaka I, Takahashi Y, et al. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins. Dent Mater J 2016;35(2):204–209. DOI: 10.4012/dmj.2015-291
Lovell LG, Berchtold KA, Elliot JE, et al. Understanding the kinetics and network formation of dimethacrylate dental resins. Polym Adv Technol 2001;12(6):335–345. DOI: 10.1002/pat.115
Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures. J Oral Rehabil 1999;26(3):185–194. DOI: 10.1046/j.1365-2842.1999.00375.x
Rodford R. The development of high impact strength denture-base materials. J Dent 1986;14(5):214–217. DOI: 10.1016/0300-5712(86)90004-7
Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19
Alla RK, Sajjan S, Alluri VR, et al. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotechnol 2013;4(1):91–97. DOI: 10.4236/jbnb.2013.41012
Ajay R, Suma K, JayaKrishnaKumar S, et al. Chemical characterization of denture base resin with a novel cycloaliphatic monomer. J Contemp Dent Pract 2019;20(8):940–946. DOI: 10.5005/jp-journals-10024-2634
Bural C, Aktaş E, Deniz G, et al. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles. J Appl Oral Sci 2011;19(4):306–312. DOI: 10.1590/s1678-77572011005000002
Borelli B, Zarone F, Rivieccio V, et al. Polyacrylic resins regulate transcriptional control of interleukin-6, gp80, and gp130 genes in human gingival fibroblasts. J Oral Sci 2017;59(1):87–91. DOI: 10.2334/josnusd.16-0388
Kurata S, Morishita K, Shimoyama K, et al. Basic study on the application of novel functional monomers to a denture base resin. Dent Mater J 2008;27(2):273–277. DOI: 10.4012/dmj.27.273
Salamone JC. Polymeric Materials Encyclopedia, 1st edition. Florida, United States: CRC Press; 1996. p. 7858.
Chiriac AP, Nita LE, Nistor MT. Copolymerization of 2-hydroxyethyl methacrylate with a comonomer with spiroacetal moiety. J Polym Sci Part A: Polym Chem 2011;49(7):1543–1551. DOI: 10.1002/pola.24575
Kundie F, Azhari CH, Ahmed ZA. Effect of nano- and micro-alumina fillers on some properties of poly(methyl methacrylate) denture base composites. J Serb Chem Soc 2017;82:1–17. DOI: 10.2298/JSC170118056K
Rodriguez LS, Paleari AG, Giro G, et al. Chemical characterization and flexural strength of a denture base acrylic resin with monomer 2-tert-butylaminoethyl methacrylate. J Prosthodont 2013;22(4):292–297. DOI: 10.1111/j.1532-849X.2012.00942.x
Chiriac AP, Nistor MT, Nita LE, et al. Poly(n,n-dimethyl acrylamide-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) synthesis as matrix ensuring intramolecular strategies for further coupling applications. Rev Roum Chim 2013;58:129–136.
Durner J, Obermaier J, Draenert M, et al. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater 2012;28(11):1146–1153. DOI: 10.1016/j.dental.2012.08.006
Mahfooz AM, Alammari MR. The use of Fournier Transform Infra-red (FTIR) spectroscopic analysis and cell viability assay to assess pre-polymerizes CAD/CAM acrylic resin denture base materials. Int J Pharm Res Allied Sci 2018;7(2):111–118. Available from: https://ijpras.com/article/the-use-of-fourier-transform-infra-red-ftir-spectroscopic-analysis-and-cell-viability-assay-to-assess-pre-polymerized-cadcam-acrylic-resin-denture-base-materials
Miletic VJ, Santini A. Remaining unreacted methacrylate groups in resin-based composite with respect to sample preparation and storing conditions using micro-Raman spectroscopy. J Biomed Mater Res B Appl Biomater 2008;87(2):468–474. DOI: 10.1002/jbm.b.31128
Gziut K, Kowalczyk A, Schmidt B, et al. Influence of methacrylate and vinyl monomers on radical bulk photopolymerization process and properties of epoxy-acrylate structural adhesives. Polymers (Basel) 2023;15(4):926. DOI: 10.3390/polym15040926
Lee T, Cramer N, Hoyle C, et al. (Meth)acrylate vinyl ester hybrid polymerizations. J Polym Sci A Polym Chem 2009;47(10):2509–2517. DOI: 10.1002/pola.23327
Lee TY, Carioscia J, Smith Z, et al. Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties. Macromolecules 2007;40(5):1473–1479. DOI: 10.1021/ma0624954
Hoyle CE, Kim KJ. The effect of aromatic amines on the photopolymerization of 1,6-hexanediol diacrylate. J Appl Polym Sci 1987;33(8):2985–9996. DOI: 10.1002/app.1987.070330831
Hoyle CE, Keel M, Kim KJ. Photopolymerization of 1,6-hexanediol diacrylate: The effect of functionalized amines. Polymer 1988;29(1):18–23. DOI: 10.1016/0032-3861(88)90194-2
Gou L, Opheim B, Coretsopoulos CN, et al. Consumption of the molecular oxygen in polymerization systems using photosensitized oxidation of dimethylanthracene. Chem Eng Commun 2006;193(5):620–627. DOI: 10.1080/00986440 500193921
Lee TY, Kaung W, Jönsson ES, et al. Synthesis and photopolymerization of novel multifunctional vinyl esters. J Polym Sci Part A Polym Chem 2004;42(17):4424–4436. DOI: 10.1002/pola.20181
International Organization for Standardization, ISO 10993-18. Biological evaluation of medical devices—part 18: chemical characterization of materials. British Standards: ISO; 2009.