World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 4 ( April, 2024 ) > List of Articles

ORIGINAL RESEARCH

Cytocompatibility of a Monomethacrylate-based Dental Copolymer Containing 1,3,5-triacryloylhexahydro-1,3,5-triazine as a Cross-linking Comonomer: An In Vitro Research

Vikraman Rakshagan, Rajendran Arun, Arul Queenalice, Vasudevan Karthikeyan, Ramakrishan Mahesh

Keywords : Cell viability, Cross-linker, Copolymer, Denture base, In vitro cytotoxicity

Citation Information : Rakshagan V, Arun R, Queenalice A, Karthikeyan V, Mahesh R. Cytocompatibility of a Monomethacrylate-based Dental Copolymer Containing 1,3,5-triacryloylhexahydro-1,3,5-triazine as a Cross-linking Comonomer: An In Vitro Research. World J Dent 2024; 15 (4):343-347.

DOI: 10.5005/jp-journals-10015-2405

License: CC BY-NC 4.0

Published Online: 17-05-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To assess the in vitro cytocompatibility of a monomethacrylate-based dental copolymer [P(MMA-Co-TATA)] containing 1,3,5-triacryloylhexahydro-1,3,5-triazine (TATA) as a cross-linking comonomer using human cells by tetrazolium (MTT) assay. Materials and methods: The research groups were categorized based on the composition of the resultant polymer formed. Nine disk-shaped specimens (n = 9) per group were prepared using the thermo-polymerization technique. Group G0 (control) consists of polymerized poly(methyl methacrylate) [P(MMA)] specimens without TATA; trial groups G10 and G20 had copolymerized specimens P(MMA-Co-TATA) with 10 and 20% TATA cross-linker (CL), respectively. Obtained eluates from the specimens were tested for in vitro cytotoxicity by MTT assay in terms of cell viability percentage (CV%) on the human keratinocytes (HK) and human gingival fibroblasts (HGF). Results: The mean CV% of G0, G10, and G20 for the HK was 72.04, 74.82, and 80.54%, respectively. Concerning HGF, the mean CV% of G0, G10, and G20 was 73.68, 80.09, and 85.00%, respectively. The descending order of cytotoxicity was G0 > G10 > G20. The CV% was statistically significant among and between the groups (p < 0.05) with both HK and HGF. Conclusion: The novel P(MMA-Co-TATA) copolymer was nontoxic to human cells in vitro when compared to the P(MMA). P(MMA-Co-TATA) with 20 wt% TATA exhibited the highest CV%. Clinical significance: Since TATA is an antimicrobial CL, the resultant dentures could possess improved mechanical properties along with resistance to microbial adhesion on the denture surface. This could reduce the perchance of denture-induced infections in debilitated senile geriatric patients.


PDF Share
  1. Ata SO, Yavuzyılmaz H. In vitro comparison of the cytotoxicity of acetal resin, heat-polymerized resin, and auto-polymerized resin as denture base materials. J Biomed Mater Res B Appl Biomater 2009;91(2):905–909. DOI: 10.1002/jbm.b.31473
  2. Huang FM, Tai KW, Hu CC, et al. Cytotoxic effects of denture base materials on a permanent human oral epithelial cell line and on primary human oral fibroblasts in vitro. Int J Prosthodont 2001;14(5):439–443. PMID: 12066639.
  3. Schuster GS, Lefebvre CA, Dirksen TR, et al. Relationships between denture base resin cytotoxicity and cell lipid metabolism. Int J Prosthodont 1995;8(6):580–586. PMID: 8595119.
  4. Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mater 1995;11(6):338–342. DOI: 10.1016/0109-5641(95)80031-x
  5. Lung CY, Darvell BW. Minimization of the inevitable residual monomer in denture base acrylic. Dent Mater 2005;21(12):1119–1128. DOI: 10.1016/j.dental.2005.03.003
  6. Stafford GD, Brooks SC. The loss of residual monomer from acrylic orthodontic resins. Dent Mater 1985;1(4):135–138. DOI: 10.1016/s0109-5641(85)80005-1
  7. Huggett R, Brooks SC, Bates JF. The effect of different curing cycles on levels of residual monomer in acrylic resin denture base materials. Quintessence Dent Technol 1984;8(6):365–371. PMID: 6395209.
  8. Davy KW, Braden M. Residual monomer in acrylic polymers. Biomaterials 1991;12(6):540–564. DOI: 10.1016/0142-9612(91)90047-e
  9. Harrison A, Huggett R. Effect of the curing cycle on residual monomer levels of acrylic resin denture base polymers. J Dent 1992;20(6):370–374. DOI: 10.1016/0300-5712(92)90031-7
  10. Yilmaz H, Aydin C, Cağlar A, et al. The effect of glass fiber reinforcement on the residual monomer content of two denture base resins. Quintessence Int 2003;34(2):148–153. PMID: 12666866.
  11. Devlin H, Watts D. Acrylic ‘allergy’? Br Dent J 1984;157(8):272–275. DOI: 10.1038/sj.bdj.4805466
  12. Jorge JH, Giampaolo ET, Vergani CE, et al. Biocompatibility of denture base acrylic resins evaluated in culture of L929 cells. Effect of polymerisation cycle and post-polymerisation treatments. Gerodontology 2007;24(1):52–57. DOI: 10.1111/j.1741-2358.2007.00146.x
  13. Dahl JE, Frangou-Polyzois MJ, Polyzois GL. In vitro biocompatibility of denture relining materials. Gerodontology 2006;23(1):17–22. DOI: 10.1111/j.1741-2358.2006.00103.x
  14. Lai YL, Chen YT, Lee SY, et al. Cytotoxic effects of dental resin liquids on primary gingival fibroblasts and periodontal ligament cells in vitro. J Oral Rehabil 2004;31(12):1165–1172. DOI: 10.1111/j.1365-2842.2004.01355.x
  15. Kanerva L, Henriks-Eckerman ML, Estlander T, et al. Occupational allergic contact dermatitis and composition of acrylates in dentin bonding systems. J Eur Acad Dermatol Venerol 1994;3:157–168. DOI: 10.1111/j.1468-3083.1994.tb00091.x
  16. Enoch SJ, Roberts DW, Cronin MTD. Electrophilic reaction chemistry of low molecular weight respiratory sensitizers. Chem Res Toxicol 2009;22(8):1447–1453. DOI: 10.1021/tx9001463
  17. Bohling HG, Borchard U, Drouin H. Monomeric methylmethacrylate (MMA) acts on the desheathed myelinated nerve and on the node of Ranvier. Arch Toxicol 1977;38(4):307–314. DOI: 10.1007/BF00352035
  18. Seppalainen AM, Rajaniemi R. Local neurotoxicity of methyl methacrylate among dental technicians. Am J Ind Med 1984;5(6):471–477. DOI: 10.1002/ajim.4700050606
  19. Donaghy M, Rushworth G, Jacobs JM. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer. Neurology 1991;41(7):1112–1116. DOI: 10.1212/wnl.41.7.1112
  20. Gautam R, Singh RD, Sharma VP, et al. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater 2012;100(5):1444–1450. DOI: 10.1002/jbm.b.32673
  21. Savonius B, Keskinen H, Tuppurainen M, et al. Occupational respiratory disease caused by acrylates. Clin Exp Allergy 1993;23(5):416–424. DOI: 10.1111/j.1365-2222.1993.tb00348.x
  22. Lonnroth EC, Wellendorf H, Ruyter E. Permeability of different types of medical protective gloves to acrylic monomers. Eur J Oral Sci 2003;111(5):440–446. DOI: 10.1034/j.1600-0722.2003.00064.x
  23. Lyapina M, Dencheva M, Krasteva A, et al. Concomitant contact allergy to formaldehyde and methacrylic monomers in students of dental medicine and dental patients. Int J Occup Med Environ Health 2014;27(5):797–807. DOI: 10.2478/s13382-014-0314-4
  24. Hensten-Pettersen A. Skin and mucosal reactions associated with dental materials. Eur J Oral Sci 1998;106(2 Pt 2):707–712. PMID: 9584904.
  25. Ortengren U, Andreasson H, Karlsson S, et al. Prevalence of self-reported hand eczema and skin symptoms associated with dental materials among Swedish dentists. Eur J Oral Sci 1999;107(6):496–505. DOI: 10.1046/j.0909-8836.1999.eos107612.x
  26. Ajay R, Suma K, Sasikala R, et al. Chemical structure and physical properties of heat-cured poly(methyl methacrylate) resin processed with cycloaliphatic comonomer: an in vitro study. J Contemp Dent Pract 2020;21(3):285–290. PMID: 32434976.
  27. Moharram MA, Abdel Nour KN, Abdel Hakeem N, et al. Effect of cross-linking agents on the molecular properties of denture base resins. J Mater Sci 1992;27:6041–6046. DOI: 10.1007/BF01133747
  28. Ajay R, Suma K, SreeVarun M, et al. Evaluation of in vitro cytotoxicity of heat-cure denture base resin processed with a dual-reactive cycloaliphatic monomer. J Contemp Dent Pract 2019;20(11):1279–1285. PMID: 31892679.
  29. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19
  30. Ajay R, Rakshagan V, Queenalice A, et al. Effect of triazine comonomer substitution on the structure and glass transition temperature of monomethacrylate-based resin polymer: an in vitro study. J Contemp Dent Pract 2022;23(2):202–207. PMID: 35748450.
  31. Rakshagan V, Ajay R, Ranjani T, et al. Portraiture and double bond conversion of a monomethacrylate-based oral prosthetic resin substituted with a novel tri(azine-acrylate) cross-linker. J Contemp Dent Pract 2022;23(4):425–430. PMID: 35945836.
  32. International Organization for Standardization, ISO 10993-12: Biological Evaluation of Medical Devices. Part 12, Sample Preparation and Reference Materials; ISO. Geneva, Switzerland; 2012.
  33. International Organization for Standardization, ISO 10993-5: Biological Evaluation of Medical Devices. Part 5, Tests for in vitro Cytotoxicity; ISO:. Geneva, Switzerland, 2009.
  34. Ajay R, Rakshagan V, Sasikala R, et al. Evaluation of cytocompatibility of thermopolymerized denture base copolymer containing a novel ring-opening oxaspiro comonomer. World J Dent 2022;13(2):127–132. DOI: 10.5005/jp-journals-10015-1901
  35. Sivakumar JS, Ajay R, Nilofernisha N, et al. In vitro cytocompatibility of dental restorative composite resin photopolymerized with a novel multifunctional cross-linking comonomer. World J Dent 2021;12(5):403–408. DOI: 10.5005/jp-journals-10015-1858
  36. Ruyter IE, Svendsen SA. Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand 1978;36(2):75–82. DOI: 10.3109/00016357809027569
  37. Att W, Yamada M, Kojima N, et al. N-Acetyl cysteine prevents suppression of oral fibroblast function on poly(methylmethacrylate) resin. Acta Biomater 2009;5(1):391–398. DOI: 10.1016/j.actbio.2008.07.021
  38. Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, et al. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine 2012;7:4777–4786. DOI: 10.2147/IJN.S32391
  39. Segerström S, Sandborgh-Englund G, Ruyter EI. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures. Eur J Oral Sci 2011;119(3):246–252. DOI: 10.1111/j.1600-0722.2011.00826.x
  40. Dawlee S, Jayakrishnan A, Jayabalan M. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications. J Mater Sci Mater Med 2009;20(Suppl 1):S243–S250. DOI: 10.1007/s10856-008-3557-4
  41. Cochis A, Fracchia L, Martinotti MG, et al. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113(6):755–761. DOI: 10.1016/j.oooo.2011.11.004
  42. Regis RR, Della Vecchia MP, Pizzolitto AC, et al. Antimicrobial properties and cytotoxicity of an antimicrobial monomer for application in prosthodontics. J Prosthodont 2012;21(4):283–290. DOI: 10.1111/j.1532-849X.2011.00815.x
  43. Horie K, Otagawa M, Muraaoka M, et al. Calorimetric investigation of polymerization reactions. V. Crosslinked copolymerization of methyl methacrylate with ethylene dimethacrylate. J Polym Sci 1975;13(2):445–486. DOI: 10.1002/POL.1975.170130217
  44. Viljanen EK, Skrifvars M, Vallittu PK. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion. J Biomater Sci Polym Ed 2005;16(10):1219–1231. DOI: 10.1163/156856205774269566
  45. Taira M, Nakao H, Matsumoto T, et al. Cytotoxic effect of methyl methacrylate on 4 cultured fibroblasts. Int J Prosthodont 2000;13(4):311–315. PMID: 11203647.
  46. Schmalz G. Use of cell cultures for toxicity testing of dental materials–advantages and limitations. J Dent 1994;22(Suppl 2):S6–S11. DOI: 10.1016/0300-5712(94)90032-9
  47. Goiato MC, Freitas E, dos Santos D, et al. Acrylic resin cytotoxicity for denture base–literature review. Adv Clin Exp Med 2015;24(4):679–686. DOI: 10.17219/acem/33009
  48. Supervision of Medical Devices Division of the Pharmaceutical Affairs Bureau. Guideline of physical, chemical and biological study for Dental materials. Japan Association for the Advancement of Medical Equipment (JAAME), Tokyo; 1997. pp. 40–41.
  49. Sheridan PJ, Koka S, Ewoldsen NO, et al. Cytotoxicity of denture base resins. Int J Prosthodont 1997;10(1):73–77. PMID: 9484073.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.