World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 1 ( January, 2024 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Cytotoxicity of Green Synthesized Strontium Fluorapatite Nanoparticles on Human Gingival Fibroblasts: An In Vitro Study

Nisshitha Rao Setvaji, Aravind Kumar Subramanian

Keywords : Cytotoxicity test, Fluorapatite, Human gingival fibroblasts, MTT assay, Nanoparticle, Strontium

Citation Information : Setvaji NR, Subramanian AK. Evaluation of Cytotoxicity of Green Synthesized Strontium Fluorapatite Nanoparticles on Human Gingival Fibroblasts: An In Vitro Study. World J Dent 2024; 15 (1):25-29.

DOI: 10.5005/jp-journals-10015-2357

License: CC BY-NC 4.0

Published Online: 20-02-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To evaluate the cytotoxicity of the green synthesized strontium fluorapatite nanoparticles (SrFAp NPs) on human gingival fibroblast (HGF) cell lines using MTT assay. Materials and methods: Strontium fluorapatite nanoparticles (SrFAP NPs) used in the present study were developed using green synthesis method from plant extracts of Equisetum arvense (Horsetail) and Laminariales (Kelp) along with fluoride and hydroxyapatite precursors. The HGF cell lines were treated with different concentrations of 10, 20, 30, 40, and 80 μg/mL of SrFAp NPs and cultured. The cultured media was treated with MTT reagent and incubated. The number of damaged or dying cells was represented by the absorbance of the produced formazan at 570 nm and measured using a UV Vis spectrophotometer. Results: The cell viability decreased with increasing concentrations of SrFAp NPs. At the lowest concentrations of 10 μg/mL, cell viability was 83%, and at 20, 30, 40, and 80 μg/mL, the cell viability was 81, 79, 74, and 70%, respectively. One-way analysis of variance (ANOVA) showed a significant difference between the different concentrations (p = 0.000, F = 14.682). Conclusion: Green synthesized SrFAp NPs showed good biocompatibility against HGF using the MTT assay. At the lowest concentration of 10 μg/mL, cell viability was 83% and at the highest concentration of 80 μg/mL NPs, the cell viability was 70%. Clinical significance: Strontium fluorapatite nanoparticles (SrFAp NPs) were developed by green synthesis method, which is nontoxic and environmentally friendly. The NPs were hypothesized to have enamel remineralizing properties which could be further applied clinically to prevent white spot lesions.


HTML PDF Share
  1. Pareek V, Bhargava A, Gupta R, et al. Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 2017;9(7):527–544. DOI: 10.1166/asem.2017.2027
  2. Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020;7:193. DOI: 10.3389/fmolb.2020.00193
  3. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 2018;8(1):58–67. DOI: 10.1016/j.jobcr.2017.12.004
  4. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022;20(1):262. DOI: 10.1186/s12951-022-01477-8
  5. Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009;86(3):215–223. DOI: 10.1016/j.yexmp.2008.12.004
  6. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis, properties, recent progress, and challenges. Mater Adv 2021;2(6):1821–1871. DOI: 10.1039/D0MA00807A
  7. Habibullah G, Viktorova J, Ruml T. Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 2021;16(1):47. DOI: 10.1186/s11671-021-03480-8
  8. Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 2022;26:102336. DOI: 10.1016/j.eti.2022.102336
  9. Álvarez-Chimal R, Ángel Arenas-Alatorre J. Advances in Green Chemistry. IntechOpen; 2023.
  10. Rajendran R, Nair KR, Sandhya R, et al. Evaluation of remineralization potential and cytotoxicity of a novel strontium-doped nanohydroxyapatite paste: an in vitro study. J Conserv Dent 2020;23(4):330–336. DOI: 10.4103/JCD.JCD_162_20
  11. O'Donnell MD, Fredholm Y, de Rouffignac A, et al. Structural analysis of a series of strontium-substituted apatites. Acta Biomater 2008;4(5):1455–1464. DOI: 10.1016/j.actbio.2008.04.018
  12. Thuy TT, Nakagaki H, Kato K, et al. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch Oral Biol 2008;53(11):1017–1022. DOI: 10.1016/j.archoralbio.2008.06.005
  13. Abbasi R, Shineh G, Mobaraki M, et al. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res 2023;25(3):43. DOI: 10.1007/s11051-023-05690-w
  14. Vijayakumar S, Ganesan S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J Nanomater 2012;2012:1–9. DOI: 10.1155/2012/734398
  15. Husain S, Sundari S, Jain RK, et al. Green synthesis of Terminalia Arjuna-mediated hydroxyapatite nanoparticles, its morphological assessment and evaluation of cytotoxic and antioxidant properties: an in-vitro study. J Clin Diagn Res 2023;17(3). DOI: 10.7860/JCDR/2023/59231.17659
  16. Bahadar H, Maqbool F, Niaz K, et al. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016;20(1):1–11. DOI: 10.7508/ibj.2016.01.001
  17. Pfaller T, Colognato R, Nelissen I, et al. The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 2010;4(1):52–72. DOI: 10.3109/17435390903374001
  18. Larramendy M, Soloneski S. Genotoxicity: A Predictable Risk to Our Actual World. BoD—Books on Demand; 2018.
  19. Aslantürk ÖS. Genotoxicity: A Predictable Risk to Our Actual World. IntechOpen; 2017.
  20. van Tonder A, Joubert AM, Cromarty AD. Limitations of the 3-(4,5-dimethylthiazol-2-yl)—2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 2015;8:47. DOI: 10.1186/s13104-015-1000-8
  21. Setvaji RN, Subramanian KA. Green synthesis of strontium fluorapatite nanoparticles using extracts of equisetum arvense and laminariales. J Complement Med Res 2022;13(5):96–101. DOI: 10.5455/jcmr.2022.13.0 5.18
  22. Kong B, Seog JH, Graham LM, et al. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (Lond). 2011;6(5):929–941. DOI: 10.2217/nnm.11.77
  23. Ghasemi M, Turnbull T, Sebastian S, et al. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci 2021;22(23):12827. DOI: 10.3390/ijms222312827
  24. Krishnan V, Bhatia A, Varma H. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration. Dent Mater 2016;32(5):646–659. DOI: 10.1016/j.dental.2016.02.002
  25. Kim MY, Kwon HK, Choi CH, et al. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. KEM 2007;330–332:1347–1350. DOI: 10.4028/www.scientific.net/KEM.330-332.1347
  26. Rajendran R, Antony DP, Paul P, et al. A systematic review on the effect of strontium-doped nanohydroxyapatite in remineralizing early caries lesion. Cureus 2023;15(8):e44176. DOI: 10.7759/cureus.44176
  27. Naranthatta S, Janardhanan P, Pilankatta R, et al. Green synthesis of engineered CdS nanoparticles with reduced cytotoxicity for enhanced bioimaging application. ACS Omega 2021;6(12):8646–8655. DOI: 10.1021/acsomega.1c00519
  28. Goyal MR, Suleria HAR, Ayeleso AO, et al. The Therapeutic Properties of Medicinal Plants: Health-Rejuvenating Bioactive Compounds of Native Flora. CRC Press; 2019.
  29. Al-Snafi AE. The pharmacology of Equisetum arvense-a review. IOSR J Pharm 2017;7(2):31–42. DOI: 10.9790/3013-0702013142
  30. Sari M, Ramadhanti DM, Amalina R, et al. Development of a hydroxyapatite nanoparticle-based gel for enamel remineralization -a physicochemical properties and cell viability assay analysis. Dent Mater J 2022;41(1):68–77. DOI: 10.4012/dmj.2021-102
  31. Potiprapanpong W, Naruphontjirakul P, Khamsuk C, et al. Assessment of mechanical/chemical properties and cytotoxicity of resin-modified glass ionomer cements containing Sr/F-bioactive glass nanoparticles and methacrylate functionalized polyacids. Int J Mol Sci 2023;24(12):10231. DOI: 10.3390/ijms24121023
  32. Abdalla MM, Bijle MN, Abdallah NMA, et al. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate. J Dent 2023;138:104731. DOI: 10.1016/j.jdent.2023.104731
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.