A Study of the Antagonist Tooth Wear, Hardness, and Fracture Toughness of Three Different Generations of Zirconia
Abid S Khan, Taufique Shaikh, Mosin Shaikh, Quraish Lal
Keywords :
Fracture toughness, Hardness, Translucent zirconia, Three generations of zirconia, Wear
Citation Information :
Khan AS, Shaikh T, Shaikh M, Lal Q. A Study of the Antagonist Tooth Wear, Hardness, and Fracture Toughness of Three Different Generations of Zirconia. World J Dent 2023; 14 (8):688-695.
Aim: The objective of this study was to evaluate the wear of opposing natural teeth, hardness, and fracture toughness of all three generations of zirconia.
Materials and methods: Three groups were divided based on the generation of zirconia (n = 12): groups I (first generation of zirconia), II (second generation of zirconia), and III (third generation of zirconia). Wear of opposing tooth: the discs and extracted human premolars were placed onto holders on a two-body wear machine under a constant load of 5 kg. Hardness was calculated using Vicker's microhardness tester, Reichert Austria Make. International Organization for Standardization (ISO) standardized chart was used to check the hardness number based on the indentation length. Fracture toughness was calculated using Niihara's formula.
Results: Statistical analysis was done using paired t-test and one-way analysis of variance (ANOVA). The maximum amount of wear was seen with the first generation of translucent zirconia—group I (0.93 mm) followed by group II and III (0.76 and 0.22 mm, respectively). Hardness and fracture toughness value from highest to lowest was in the following order group I > group II > group III.
Conclusion: Within the limitations of this in vitro study, it can be concluded that the third generation of zirconia (group III) showed the least amount of wear of a natural opposing tooth, hardness, and fracture toughness values among all three generations of zirconia.
Clinical significance: Around 5% of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) monolithic translucent zirconia is clinically significant in anterior aesthetic restorations since it is superior to glass ceramics in terms of mechanical properties and is almost similar in terms of translucency. Good esthetic results can also be achieved in the posterior region with minimal occlusal reduction. Also, monolithic translucent zirconia (third generation of zirconia) abrades the antagonist dentition less than other esthetic ceramics.
Manziuc MM, Gasparik C, Negucioiu M, et al. Optical properties of translucent zirconia: a review of the literature. EuroBiotech J 2019;3(1):45–51. DOI: 10.2478/ebtj-2019-0005
Stawarczyk B, Keul C, Eichberger M, et al. Three generations of zirconia: from veneered to monolithic. Part I. Quintessence Int 2017;48(5):369–380. DOI: 10.3290/j.qi.a38057
Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin North Am 2017;61(4):797–819. DOI: 10.1016/j.cden.2017.06.005
Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent 2018;26(2):62–74. DOI: 10.1922/EJPRD_01759Ghodsi13
Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97(2):140–147. DOI: 10.1177/0022034517737483
Chevalier J, Gremillard L, Virkar AV, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 2009;92(9):1901–1920. DOI: 10.1111/j.1551-2916.2009.03278.x
Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112(1):22–30. DOI: 10.1016/j.prosdent.2014.01.005
Tsukuma K, Yamashita I, Kusunose T. Transparent 8 mol% Y2O3–ZrO2 (8Y) Ceramics. J Am Ceram Soc 2008;91(3):813–818. DOI: 10.1111/j.1551-2916.2007.02202.x
Marchack BW, Sato S, Marchack CB, et al. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report. J Prosthet Dent 2011;106(3):145–152. DOI: 10.1016/S0022-3913(11)60112-1
Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dent Mater 2016;32(3):394–402. DOI: 10.1016/j.dental.2015.12.015
Wang G, Zhang S, Bian C, et al. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. J Mech Behav Biomed Mater 2014;39:119–128. DOI: 10.1016/j.jmbbm.2014.07.019
Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int 2013;44(8):557–566. DOI: 10.3290/j.qi.a29937
Johansson C, Kmet G, Rivera J, et al. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72(2):145–153. DOI: 10.3109/00016357.2013.822098
Stawarczyk B, Özcan M, Schmutz F, et al. Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists. Acta Odontol Scand 2013;71(1):102–112. DOI: 10.3109/00016357.2011.654248
Harianawala HH, Kheur MG, Apte SK, et al. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont 2014;6(6):456–461. DOI: 10.4047/jap.2014.6.6.456
Harada K, Raigrodski AJ, Chung KH, et al. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent 2016;116(2):257–263. DOI: 10.1016/j.prosdent.2015.11.019
Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32(12):e327–e337. DOI: 10.1016/j.dental.2016.09.025
Yip KH, Smales RJ, Kaidonis JA. Differential wear of teeth and restorative materials: clinical implications. Int J Prosthodont 2004;17(3):350–356. PMID: 15237885.
Mundhe K, Jain V, Pruthi G, et al. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns. J Prosthet Dent 2015;114(3):358–363. DOI: 10.1016/j.prosdent.2015.03.001
Rupawala A, Musani SI, Madanshetty P, et al. A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems. J Indian Prosthodont Soc 2017;17(1):8–14. DOI: 10.4103/0972-4052.194940
ISO - ISO 6507-2:2018 - Metallic materials — Vickers hardness test — Part 2: Verification and calibration of testing machines
Elmaria A, Goldstein G, Vijayaraghavan T, et al. An evaluation of wear when enamel is opposed by various ceramic materials and gold. J Prosthet Dent 2006;96(5):345–53. DOI: 10.1016/j.prosdent.2006.09.002
Monasky GE, Taylor DF. Studies on the wear of porcelain, enamel, and gold. J Prosthet Dent 1971;25(3):299–306. DOI: 10.1016/0022-3913(71)90191-0
Jagger DC, Harrison A. An in vitro investigation into the wear effects of unglazed, glazed, and polished porcelain on human enamel. J Prosthet Dent 1994;72(3):320–323. DOI: 10.1016/0022-3913(94)90347-6
Jacobi R, Shillingburg HT Jr, Duncanson MG Jr. A comparison of the abrasiveness of six ceramic surfaces and gold. J Prosthet Dent 1991;66(3):303–309. DOI: 10.1016/0022-3913(91)90254-t
Hahnel S, Schultz S, Trempler C, et al. Two-body wear of dental restorative materials. J Mech Behav Biomed Mater 2011;4(3):237–244. DOI: 10.1016/j.jmbbm.2010.06.001
DeLong R. Intra-oral restorative materials wear: rethinking the current approaches: how to measure wear. Dent Mater 2006;22(8):702–711. DOI: 10.1016/j.dental.2006.02.003
Condon JR, Ferracane JL. Evaluation of composite wear with a new multi-mode oral wear simulator. Dent Mater 1996;12(4):218–226. DOI: 10.1016/s0109-5641(96)80026-1
Lambrechts P, Debels E, Van Landuyt K, et al. How to simulate wear? Overview of existing methods. Dent Mater 2006;22(8):693–701. DOI: 10.1016/j.dental.2006.02.004
Kadokawa A, Suzuki S, Tanaka T. Wear evaluation of porcelain opposing gold, composite resin, and enamel. J Prosthet Dent 2006;96(4):258–265. DOI: 10.1016/j.prosdent.2006.08.016
Harrison A. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine. J Oral Rehabil 1978;5(2):111–115. DOI: 10.1111/j.1365-2842.1978.tb01202.x
Li H, Zhou ZR. Wear behaviour of human teeth in dry and artificial saliva conditions. Wear 2001;249(10–11):980–984. DOI: 10.1016/S0043-1648(01)00835-3
Lambrechts P, Braem M, Vuylsteke-Wauters M, et al. Quantitative in vivo wear of human enamel. J Dent Res 1989;68(12):1752–1754. DOI: 10.1177/00220345890680120601
Tsubakino H. Isothermal tetragonal-to-monoclinic phase transformation in a zirconia–yttria system. Mater Trans 2005;46(7):1443–1451. DOI: 10.2320/matertrans.46.1443
Masaki T. Mechanical properties of Y2O3-stabilized tetragonal ZrO2 polycrystals after ageing at high temperature. J Am Ceram Soc 1986;69(7):519–522. DOI: 10.1111/j.1151-2916.1986.tb04786.x
Masaki T. Mechanical properties of toughened ZrO2-Y2O3 ceramics. J Am Ceram Soc 2021;69(8):638–640. DOI: 10.1111/j.1151-2916.1986.tb04823.x
Emam SA, Koheil SA, Afif RR. Wear of human enamel opposing ultra-translucent zirconia with two surface finishing procedures. Alexandria Dent J 2020. DOI: 10.21608/adjalexu.2020.21675.1033
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20(1):1–25. DOI: 10.1016/s0142-9612(98)00010-6
Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24(3):299–307. DOI: 10.1016/j.dental.2007.05.007
Candido LM, Fais LMG, Reis JMDSN, et al. Surface roughness and hardness of yttria stabilized zirconia (Y-TZP) after 10 years of simulated brushing. Rev Odontol da UNESP 2014;43(6):379–383. DOI: 10.1590/1807-2577.1049
Curtis AR, Wright AJ, Fleming GJ. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 2006;34(3):195–206. DOI: 10.1016/j.jdent.2005.06.006
Seghi RR, Rosenstiel SF, Bauer P. Abrasion of human enamel by different dental ceramics in vitro. J Dent Res 1991;70(3):221–225. DOI: 10.1177/00220345910700031301
Aboushahba M, Katamish H, Elagroudy M. Evaluation of wear and hardness of zirconia with different surface treatment protocols a systematic review. Indian J Sci Technol 2016;9(39):1–15. DOI: 10.17485/ijst/2016/v9i39/88542
Harada K, Shinya A, Yokoyama D, et al. Effect of loading conditions on the fracture toughness of zirconia. J Prosthodont Res 2013;57(2):82–87. DOI: 10.1016/j.jpor.2013.01.005
Niihara K, Morena R, Hasselman DPH. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1982;1(1):13–16. DOI: 10.1007/BF00724706
Lange FF. Transformation toughening - Part 3 Experimental observations in the ZrO2-Y2O3 system. J Mater Sci 1982;17(1):240–246. DOI: 10.1007/BF00809059
Alkadi L, Ruse ND. Fracture toughness of two lithium disilicate dental glass ceramics. J Prosthet Dent 2016;116(4):591–596. DOI: 10.1016/j.prosdent.2016.02.009
Zhang F, Reveron H, Spies BC, et al. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019;91:24–34. DOI: 10.1016/j.actbio.2019.04.043