World Journal of Dentistry

Register      Login

VOLUME 14 , ISSUE 3 ( March, 2023 ) > List of Articles


Effect of Low-level Laser Therapy on the Viability and Proliferation of Gingival Mesenchymal Stem Cells: An Ex Vivo Pilot Study

Suman Basavaraju, Veena H Raghavan, Vidya Priyadarshini, Anshu K Yadav

Keywords : Biostimulation, Gingival mesenchymal stem cells, Low-level laser therapy

Citation Information : Basavaraju S, Raghavan VH, Priyadarshini V, Yadav AK. Effect of Low-level Laser Therapy on the Viability and Proliferation of Gingival Mesenchymal Stem Cells: An Ex Vivo Pilot Study. World J Dent 2023; 14 (3):254-258.

DOI: 10.5005/jp-journals-10015-2195

License: CC BY-NC 4.0

Published Online: 05-05-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: The present ex vivo study was designed to assess the in vitro effects of low-level laser therapy (LLLT) on the viability and proliferation of gingival mesenchymal stem cells (GMSCs). Materials and methods: Gingival explants were obtained from the gingival collar of teeth advised for minor gingival surgical procedures. Following processing, the GMSCs were irradiated with a 660 nm diode laser according to the following groups. Group I—1 J/cm2, 25 mW, and 40 seconds; group II—2 J/cm2, 50 mW, and 10 seconds; and group III—no irradiation (control group). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was done to assess the rate of cell proliferation by measuring the absorbance values using a spectrometer. The mean values of absorbance in each of the three groups were considered for statistical analysis separately at 12 and 24 hours, respectively. Results: The absorbance values of tetrazolium reduction were directly proportional to the rate of cell proliferation. Both groups I and II showed statistically significant differences in the absorbance rates from 12 to 24 hours after irradiation. Both at 12 and 24 hours after irradiation, group I exhibited a greater absorbance value compared to group II and this difference was statistically significant (p < 0.05). Conclusion: Low-level laser therapy (LLLT) using 660 nm diode laser with different energies showed a positive effect on in vitro proliferation of GMSCs. The rate of proliferation was comparatively more significant at 12 hours and lower energy. Clinical significance: This study provides a basis for the probable application of LLLT as a tool in tissue engineering using GMSCs.

PDF Share
  1. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–317. DOI: 10.1080/14653240600855905
  2. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–147. DOI: 10.1126/science.284.5411.143
  3. Soler R, Orozco L, Munar A, et al. Final results of a phase I-II trial using ex vivo expanded autologous Mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 2016;23(4):647–654. DOI: 10.1016/j.knee.2015.08.013Z
  4. Lin F, Ichim TE, Pingle S, et al. Mesenchymal stem cells as living anti-inflammatory therapy for COVID-19 related acute respiratory distress syndrome. World J Stem Cells 2020;12(10):1067–1079. DOI: 10.4252/wjsc.v12.i10.1067
  5. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371(9624):1579–1586. DOI: 10.1016/S0140-6736(08)60690-X
  6. Jung Y, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 2013;4:1795. DOI: 10.1038/ncomms2766
  7. Golchin A, Farahany TZ, Khojasteh A, et al. The clinical trials of mesenchymal stem cell therapy in skin diseases: an update and concise review. Curr Stem Cell Res Ther 2019;14(1):22–33. DOI: 10.2174/1574888X13666180913123424
  8. Yañez RM, Lamana ML, Garcia-Castro J, et al. In vitro and in vivo immunomodulatory effects of mesenchymal stem cells from adipose tissue. Blood 2005;106(11):3098. DOI: 10.1182/blood.V106.11.3098.3098
  9. Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 2010;28(10):1856–1868. DOI: 10.1002/stem.503
  10. Li P, Zhao Y, Ge L. Therapeutic effects of human gingiva-derived mesenchymal stromal cells on murine contact hypersensitivity via prostaglandin E2-EP3 signaling. Stem Cell Res Ther 2016;7(1):103. DOI: 10.1186/s13287-016-0361-9
  11. Shi Q, Qian Z, Liu D, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol 2017;8:904. DOI: 10.3389/fphys.2017.00904
  12. Linard C, Tissedre F, Busson E, et al. Therapeutic potential of gingival fibroblasts for cutaneous radiation syndrome: comparison to bone marrow-mesenchymal stem cell grafts. Stem Cells Dev 2015;24(10):1182–1193. DOI: 10.1089/scd.2014.0486
  13. Lu Y, Xu Y, Zhang S, et al. Human gingiva-derived mesenchymal stem cells alleviate inflammatory bowel disease via IL-10 signalling-dependent modulation of immune cells. Scand J Immunol 2019;90(3):e12751. DOI: 10.1111/sji.12751
  14. Chen M, Su W, Lin X, et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis Rheum 2013;65(5):1181–1193. DOI: 10.1002/art.37894
  15. Gu Y, Shi S. Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis. Arthritis Res Ther 2016;18(1):262. DOI: 10.1186/s13075-016-1160-5
  16. Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009;183(12):7787–7798. DOI: 10.4049/jimmunol.0902318
  17. Ni X, Xia Y, Zhou S, et al. Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways. Cell Death Dis 2019;10(1):13. DOI: 10.1038/s41419-018-1273-7
  18. Zhang W, Zhou L, Dang J, et al. Human gingiva-derived mesenchymal stem cells ameliorate streptozoticin-induced T1DM in mice via suppression of T effector cells and up-regulating treg subsets. Sci Rep 2017;7(1):15249. DOI: 10.1038/s41598-017-14979-5
  19. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015;33(4):183–184. DOI: 10.1089/pho.2015.9848
  20. Barboza CA, Ginani F, Soares DM, et al. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo) 2014;12(1):75–81. DOI: 10.1590/S1679-45082014AO2824
  21. Bai J, Li L, Kou N, et al. Low-level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther 2021;12(432):1–18. DOI: 10.1186/s13287-021-02493-5
  22. Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol 2018;14(8):493–507. DOI: 10.1038/s41581-018-0023-5
  23. Fawzy El-Sayed KM, Mekhemar MK, Beck-Broichsitter BE, et al. Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. J Clin Periodontol 2015;42(5):448–457. DOI: 10.1111/jcpe.12401
  24. Zhang Q, Nguyen PD, Shi S, et al. Neural crest stem-like cells non-genetically induced from human gingiva-derived mesenchymal stem cells promote facial nerve regeneration in rats. Mol Neurobiol 2018;55(8):6965–6983. DOI: 10.1007/s12035-018-0913-3
  25. Feng J, Li X, Zhu S, et al. Photobiomodulation with 808-nm diode laser enhances gingival wound healing by promoting migration of human gingival mesenchymal stem cells via ROS/JNK/NF-κB/MMP-1 pathway. Lasers Med Sci 2020;35(8):1831–1839. DOI: 10.1007/s10103-020-03040-z
  26. Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling. Lasers Med Sci 2022;37(2):941–948. DOI: 10.1007/s10103-021-03338-6
  27. Wu JY, Chen CH, Yeh LY, et al. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 2013;5(2):85–91. DOI: 10.1038/ijos.2013.38
  28. Soares DM, Ginani F, Henriques ÁG, et al. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci. 2015;30(3):1171–1174. DOI: 10.1007/s10103-013-1436-9
  29. Ginani F, Soares DM, de Oliveira Rocha HA, et al. Low- level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 2018;33:95–102. DOI: 10.1007/s10103-017-2355-y
  30. Zaccara IM, Ginani F, Mota-Filho HG, et al. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 2015;30(9):2259–2264. DOI: 10.1007/s10103-015-1803-9
  31. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 2012;27(1):237–249. DOI: 10.1007/s10103-011-0885-2
  32. Pereira AN, Eduardo Cde P, Matson E, et al. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 2002;31(4):263–267. DOI: 10.1002/lsm.10107
  33. Almeida-Junior LA, Marques NCT, Prado MTO, et al. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci. 2019;34(9):1917–1924. DOI: 10.1007/s10103-019-02836-y
  34. Fernandes AP, Junqueira Mde A, Marques NC, et al. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2016;24(4):332–337. DOI: 10.1590/1678-775720150275
  35. Kato H, Taguchi Y, Tominaga K, et al. High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J Periodontol 2016;87(4):e44–e51. DOI: 10.1902/jop.2015.150474
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.