World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE S2 ( Supplementary Issue 2, 2022 ) > List of Articles


Assessment of Salivary Lactate Dehydrogenase as a Noninvasive Biomarker for Chronic Periodontitis and Tooth Loss in Type II Diabetics

Sunila B Sangappa, Sahana Alwar Mandayam Krishnian, Srinath M Kenkere, Ravindra Shivamurthy

Keywords : Case-control study, Chronic periodontitis, Diabetes mellitus, Salivary biomarker, Salivary lactate dehydrogenase, Tooth loss

Citation Information : Sangappa SB, Krishnian SA, Kenkere SM, Shivamurthy R. Assessment of Salivary Lactate Dehydrogenase as a Noninvasive Biomarker for Chronic Periodontitis and Tooth Loss in Type II Diabetics. World J Dent 2022; 13 (S2):S203-S212.

DOI: 10.5005/jp-journals-10015-2150

License: CC BY-NC 4.0

Published Online: 31-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: This study aims at evaluating the association between salivary lactate dehydrogenase (SLDH) levels among type II diabetes mellitus (T2DM) subjects with chronic periodontitis (CP) and tooth loss to check the diagnostic value of SLDH as a noninvasive biomarker. Materials and methods: Seventy-six subjects aged from 30 to 70 years with at least 15 remaining teeth were selected for the study. Hemoglobin A1c (HbA1c) levels confirmed diabetic status while CP was assessed based on periodontal parameters with a full-mouth periodontal examination, following which the subjects were classified into four groups. Group I: controls—systemically healthy individuals (HbA1c levels ≤6.4%), without CP; group II: non-T2DM with CP—systemically healthy individuals (HbA1c ≤6.4%) with CP; group III: T2DM (HbA1c ≥6.5%) with CP; group IV: T2DM (HbA1c ≥6.5%) with CP and tooth loss due to periodontitis. Unstimulated whole saliva in fasting was collected from subjects and quantitatively assessed using a colorimetric lactate dehydrogenase assay kit. Analysis of variance (ANOVA) followed by Tukey's post hoc test was used for statistical analysis. Statistical significance was set at 5% level (p < 0.05). Karl Pearson's correlation coefficient compared the relationship between different variables. Results: ANOVA of the four groups’ mean scores yielded significant variation in SLDH levels (F = 11.2889, p < 0.05). The relationship between variables of HbA1c levels with SLDH activity levels (mU/mL) and average periodontal pocket depth (APPD) was statistically significant and a moderate correlation was found with Karl Pearson's correlation coefficient. Conclusion: Study outcomes indicate a high prevalence of CP in T2DM. The severity of periodontitis and tooth loss significantly altered LDH enzyme activity and exhibited elevated LDH levels indicating a valuable noninvasive salivary biomarker in the detection of periodontitis. Clinical significance: In view of saliva as a mainstay noninvasive screening method of periodontal disease, SLDH can assume a significant role in detecting elevated glycemic levels and distinguishing the severity of periodontitis. Routine use in general practice and dental offices can ensure early detection and monitoring.

PDF Share
  1. Singh M, Bains VK, Jhingran R, et al. Prevalence of periodontal disease in type 2 diabetes mellitus patients: a cross-sectional study. Contemp Clin Dent 2019;10(2):349–357. DOI: 10.4103/ccd.ccd_652_18
  2. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008;26(2):77–82. DOI: 10.2337/diaclin.26.2.77
  3. De Marañon AM, Iannantuoni F, Abad-Jiménez Z, et al. Relationship between PMN-endothelium interactions, ROS production and Beclin-1 in type 2 diabetes. Redox Biol 2020;34:101563. DOI: 10.1016/j.redox.2020.101563
  4. Panezai J, Altamash M, Engstrӧm PE, et al. Association of glycated proteins with inflammatory proteins and periodontal disease parameters. J Diabetes Res 2020;2020:6450742. DOI: 10.1155/2020/6450742
  5. Costa KL, Taboza ZA, Angelino GB, et al. Influence of periodontal disease on changes of glycated hemoglobin levels in patients with type 2 diabetes mellitus: a retrospective cohort study. J Periodontol 2017;88(1):17–25. DOI: 10.1902/jop.2016.160140
  6. Hostalek U. Global epidemiology of prediabetes—present and future perspectives. Clin Diabetes Endocrinol 2019;5:5. DOI: 10.1186/s40842-019-0080-0
  7. Lalla E, Cheng B, Kunzel C, et al. Dental findings, and identification of undiagnosed hyperglycemia. J Dent Res 2013;92(10):888–892. DOI: 10.1177/0022034513502791
  8. Bascones-Martínez A, González-Febles J, Sanz-Esporrín J. Diabetes and periodontal disease. Review of the literature. Am J Dent 2014;27(2):63–67.
  9. Pradhan S, Goel K. Interrelationship between diabetes and periodontitis: a review. JNMA J Nepal Med Assoc 2011;51(183):144–153.
  10. Graves DT, Corrêa JD, Silva TA. The oral microbiota is modified by systemic diseases. J Dent Res 2019;98(2):148–156. DOI: 10.1177/0022034518805739
  11. Todorovic T, Dozic I, Vicente-Barrero M, et al. Salivary enzymes and periodontal disease. Med Oral Patol Oral Cir Bucal 2006;11(2):E115–E119.
  12. Okada A, Nomura Y, Sogabe K, et al. Comparison of salivary hemoglobin measurements for periodontitis screening. J Oral Sci 2017;59(1):63–69. DOI: 10.2334/josnusd.16-0204
  13. Nomura Y, Shimada Y, Hanada N, et al. Salivary biomarkers for predicting the progression of chronic periodontitis. Arch Oral Biol 2012;57(4):413–420. DOI: 10.1016/j.archoralbio.2011.09.011
  14. Malamud D. Saliva as a diagnostic fluid. Dent Clin North Am 2011;55(1):159–178. DOI: 10.1016/j.cden.2010.08.004
  15. Nagarajan R, Miller CS, Dawson D, et al. Patient-specific variations in biomarkers across gingivitis and periodontitis. PLoS One 2015;10(9):e0136792. DOI: 10.1371/journal.pone.0136792
  16. Ebersole JL, Nagarajan R, Akers D, et al. Targeted salivary biomarkers for discrimination of periodontal health and disease(s). Front Cell Infect Microbiol 2015;5:62. DOI: 10.3389/fcimb.2015.00062
  17. Farhana A, Lappin SL. Biochemistry, lactate dehydrogenase. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.
  18. Arkkila PE, Koskinen PJ, Kantola IM, et al. Patients with type II diabetes complications are associated with liver enzyme activities in people with type 1 diabetes. Diabetes Res Clin Pract 2001;52(2):113–118. DOI: 10.1016/s0168-8227(00)00241-2
  19. Huang EJ, Kuo WW, Chen YJ, et al. Homocysteine and other biochemical parameters in type 2 diabetes mellitus with different patients with type 2 diabetes duration or patients with type 2 diabetes retinopathy. Clin Chim Acta 2006;366(1-2):293–298. DOI: 10.1016/j.cca.2005.10.025
  20. Evliyaoğlu O, Kibrisli E, Yildirim Y, et al. Routine enzymes in the monitoring of type 2 diabetes mellitus. Cell Biochem Funct 2011;29(6):506–512. DOI: 10.1002/cbf.1779
  21. Johari TY, Ghoneim MA, Moselhy SS. Thyroid profile and LDH Isoenzymes as prognostic biomarkers for diabetic and/or obese subjects. Afr Health Sci 2018;18(3):697–706. DOI: 10.4314/ahs.v18i3.28
  22. Musumeci V, Cherubini P, Zuppi C, et al. Aminotransferases and lactate dehydrogenase in saliva of diabetic patients. J Oral Pathol Med 1993;22(2):73–76. DOI: 10.1111/j.1600-0714.1993.tb00047.x
  23. Goillot E, Mutin M, Touraine JL. Sialadenitis in nonobese diabetic mice: transfer into syngencic healthy neonates by splenic T lymphocytes. Clin Immunol Immunopathol 1991;59(3):462–473. DOI: 10.1016/0090-1229(91)90041-8
  24. De La Peña VA, Diz Dios P, Tojo Sierra R. Relationship between lactate dehydrogenase activity in saliva and oral health status. Arch Oral Biol 2007;52(10):911–915. DOI: 10.1016/j.archoralbio.2007.04.008
  25. Ekuni D, Yamane-Takeuchi M, Kataoka K, et al. Validity of a new kit measuring salivary lactate dehydrogenase level for screening gingivitis. Dis Markers 2017;2017:9547956. DOI: 10.1155/2017/9547956
  26. Grigoriadis A, Sorsa T, Räisänen I, et al. Prediabetes/diabetes can be screened at the dental office by a low-cost and fast chair-side/point-of-care aMMP-8 immunotest. Diagnostics (Basel) 2019;9(4):151. DOI: 10.3390/diagnostics9040151
  27. Teasdale SL, Griffin A, Barrett HL, et al. Continuous glucose monitoring in young adults with type 1 diabetes: impact on hypoglycemia confidence and fear. Diabetes Spectr 2022;35(3):322–326. DOI: 10.2337/db18-729-p
  28. Ali SA, Telgi RL, Tirth A, et al. Lactate dehydrogenase and β-glucuronidase as salivary biochemical markers of periodontitis among smokers and non-smokers. Sultan Qaboos Univ Med J 2018;18(3):e318–e323. DOI: 10.18295/squmj.2018.18.03.009
  29. Ansari Moghadam S, Ahmadi Moghadam FS, Alijani E. Diagnostic accuracy of salivary biomarkers including lactate dehydrogenase and hemoglobin A1c for screening chronic periodontitis. Dis Markers 2022;2022:1119038. DOI: 10.1155/2022/1119038
  30. Taniguchi-Tabata A, Ekuni D, Azuma T, et al. The level of salivary lactate dehydrogenase as an indicator of the association between gingivitis and related factors in Japanese university students. J Oral Sci 2019;61(1):133–139. DOI: 10.2334/josnusd.18-0038
  31. Malicka B, Skoskiewicz-Malinowska K, Kaczmarek U. Salivary lactate dehydrogenase and aminotransferases in diabetic patients. Medicine (Baltimore) 2016;95(47):e5211. DOI: 10.1097/MD.0000000000005211
  32. Miyoshi N, Tanigawa T, Nishioka S, et al. Association of salivary lactate dehydrogenase level with systemic inflammation in a Japanese population. J Periodontal Res 2018;53(4):487–494. DOI: 10.1111/jre.12537
  33. Eke PI, Page RC, Wei L, et al. Update of the case definitions for population-based surveillance of periodontitis. J Periodontol 2012;83(12):1449–1454. DOI: 10.1902/jop.2012.110664
  34. Syndergaard B, Al-Sabbagh M, Kryscio RJ, et al. Salivary biomarkers associated with gingivitis and response to therapy. J Periodontol 2014;85(8):e295–303. DOI: 10.1902/jop.2014.130696
  35. Summary of revisions: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019;42(Suppl 1):S4–S6. DOI: 10.2337/dc19-Srev01
  36. Ortigara GB, Mário Ferreira TG, Tatsch KF, et al. The 2018 EFP/AAP periodontitis case classification demonstrates high agreement with the 2012 CDC/AAP criteria. J Clin Periodontol 2021;48(7):886–895. DOI: 10.1111/jcpe.13462
  37. Bidinotto AB, Martinez-Steele E, Thomson WM, et al. Investigation of direct and indirect association of ultra-processed food intake and periodontitis. J Periodontol 2022;93(4):603–612. DOI: 10.1002/JPER.21-0274
  38. Sanders AE, Campbell SM, Mauriello SM, et al. Heterogeneity in periodontitis prevalence in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol 2014;24(6):455–462. DOI: 10.1016/j.annepidem.2014.02.018
  39. Santos T, Cury PR, Santos E, et al. Association between severe periodontitis and obesity degree: a preliminary study. Oral Health Prev Dent 2019;17(2):173–177. DOI: 10.3290/j.ohpd.a42374
  40. Navazesh M. Methods for collecting saliva. Ann NY Acad Sci 1993;694:72–77. DOI: 10.1111/j.1749-6632.1993.tb18343.x
  41. Khader YS, Dauod AS, El-Qaderi SS, et al. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications 2006;20(1):59–68. DOI: 10.1016/j.jdiacomp.2005.05.006
  42. Mealey BL, Ocampo GL. Diabetes mellitus and periodontal disease. Periodontol 2000 2007;44:127–153. DOI: 10.1111/j.1600-0757.2006.00193.x
  43. Llambés F, Arias-Herrera S, Caffesse R. Relationship between diabetes and periodontal infection. World J Diabetes 2015;6(7):927–935. DOI: 10.4239/wjd.v6.i7.927
  44. Ahmadinia AR, Rahebi D, Mohammadi M, et al. Association between type 2 diabetes (T2D) and tooth loss: a systematic review and meta-analysis. BMC Endocr Disord 2022;22(1):100. DOI: 10.1186/s12902-022-01012-8
  45. Li J, Lu H, Wu H, et al. Periodontitis in elderly patients with type 2 diabetes mellitus: impact on gut microbiota and systemic inflammation. Aging (Albany NY) 2020;12(24):25956–25980. DOI: 10.18632/aging.202174
  46. Newman MG, Takei H, Klokkevold PR, et al. Newman and Carranza's Clinical Periodontology. Elsevier Health Sciences; 2018.
  47. Morales A, Strauss FJ, Hämmerle CHF, et al. Performance of the 2017 AAP/EFP case definition compared with the CDC/AAP definition in population-based studies. J Periodontol 2022;93(7):1003–1013. DOI: 10.1002/JPER.21-0276
  48. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol 2018;89 Suppl 1:S159–S172. DOI: 10.1002/JPER.18-0006
  49. Sherwani SI, Khan HA, Ekhzaimy A, et al. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights 2016;11:95–104. DOI: 10.4137/bmi.s38440
  50. Rajan P, Nera M, Pavalura AK, et al. Comparison of glycosylated hemoglobin (HbA1C) levels in patients with chronic periodontitis and healthy controls. Dent Res J (Isfahan) 2013;10(3):389–393.
  51. Madden TE, Herriges B, Boyd LD, et al. Alterations in HbA1c following minimal or enhanced non-surgical, non-antibiotic treatment of gingivitis or mild periodontitis in type II diabetic patients: a pilot trial. J Contemp Dent Pract 2008;9(5):9–16.
  52. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet 2012;380(9841):601–610. DOI: 10.1016/S0140-6736(12)60987-8
  53. Leong XF, Ng CY, Badiah B, et al. Association between hypertension and periodontitis: possible mechanisms. ScientificWorldJournal 2014;2014:768237. DOI: 10.1155/2014/768237
  54. Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020;75(6):1334–1357. DOI: 10.1161/HYPERTENSIONAHA.120.15026
  55. Wong DT. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 2006;137(3):313–321. DOI: 10.14219/jada.archive.2006.0180
  56. Yoshie H, Tai H, Kobayashi T, et al. Salivary enzyme levels after scaling and interleukin-1 genotypes in Japanese patients with chronic periodontitis. J Periodontol 2007;78(3):498–503. DOI: 10.1902/jop.2007.060216
  57. Nomura Y, Tamaki Y, Tanaka T, et al. Screening of periodontitis with salivary enzyme tests. J Oral Sci 2006;48(4):177–183. DOI: 10.2334/josnusd.48.177
  58. Dmour HH, Khreisat EF, Khreisat AF, et al. Assessment of lactate dehydrogenase levels among diabetic patients treated in the outpatient clinics at King Hussein Medical Center, Royal Medical Services, Jordan. Med Arch 2020;74(5):384–386. DOI: 10.5455/medarh.2020.74.384-386
  59. Sexton WM, Lin Y, Kryscio RJ, et al. Salivary biomarkers of periodontal disease in response to treatment. J Clin Periodontol 2011;38(5):434–441. DOI: 10.1111/j.1600-051X.2011.01706.x
  60. Ji S, Choi Y. Point-of-care diagnosis of periodontitis using saliva: technically feasible but still a challenge. Front Cell Infect Microbiol 2015;5:65. DOI: 10.3389/fcimb.2015.00065
  61. Rantonen P. Salivary Flow and Composition in Healthy and Diseased Adults. Helsinki: Panu Rantonen; 2003.
  62. Fenoll-Palomares C, Muñoz Montagud JV, Sanchiz V, et al. Unstimulated salivary flow rate, pH and buffer capacity of saliva in healthy volunteers. Rev Esp Enferm Dig 2004;96(11):773–783. DOI: 10.4321/S1130-01082004001100005
  63. Lee JB, Choi DH, Mah YJ, et al. Validity assessment of quantitative light-induced fluorescence-digital (QLF-D) for the dental plaque scoring system: a cross-sectional study. BMC Oral Health 2018;18(1):187. DOI: 10.1186/s12903-018-0654-8
  64. Lang NP, Schätzle MA, Löe H. Gingivitis as a risk factor in periodontal disease. J Clin Periodontol 2009;36 Suppl 10:3–8. DOI: 10.1111/j.1600-051X.2009.01415.x
  65. Kim EK, Lee SG, Choi YH, et al. Association between diabetes-related factors and clinical periodontal parameters in type-2 diabetes mellitus. BMC Oral Health 2013;13:64. DOI: 10.1186/1472-6831-13-64
  66. Lertpimonchai A, Rattanasiri S, Arj-Ong Vallibhakara S, et al. The association between oral hygiene and periodontitis: a systematic review and meta-analysis. Int Dent J 2017;67(6):332–343. DOI: 10.1111/idj.12317
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.