World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE S2 ( Supplementary Issue 2, 2022 ) > List of Articles

ORIGINAL RESEARCH

Characterization of Fabricated Bovine Hydroxyapatite Crystal as Socket Preservation Material: An SEM-EDX and X-ray Diffraction Study

Pascal Filio, Octarina, Komariah

Keywords : Biomaterial, Bovine hydroxyapatite, Socket preservation

Citation Information : Filio P, Octarina, Komariah. Characterization of Fabricated Bovine Hydroxyapatite Crystal as Socket Preservation Material: An SEM-EDX and X-ray Diffraction Study. World J Dent 2022; 13 (S2):S175-S181.

DOI: 10.5005/jp-journals-10015-2155

License: CC BY-NC 4.0

Published Online: 31-12-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: This research aimed to fabricate and characterize bovine hydroxyapatite (BHA) crystal by using scanning electron microscope-energy dispersive X-ray (SEM-EDX) and X-ray diffraction (XRD) test for the evaluation of its potential as socket preservation material. Materials and methods: Bovine hydroxyapatite was fabricated from bovine cancellous bone that was washed and cut into small pieces. The bone was placed in an ultrasonic cleaner to remove the fat, heated in the oven at 1000°C for 1 hour and dried. The bone was then grounded into a powder and sieved through 150 µm sieves. Powdered BHA was then analyzed with SEM-EDX to analyze the structure and content of the HA element, and an XRD test was used to analyze the HA crystal. Results: From the SEM test, BHA had a crystalline particle with hexagonal crystal with an average size of 197 µm. The EDX test indicated BHA has the elements of carbon (C) (50.71%), oxygen (O) (34.59%), sodium (Na) (0.35 %), magnesium (Mg) (0.35%), phosphorus (P) (4.29%), calcium (Ca) (8.97%), and niobium (Nb) (0.74%). The XRD test showed that BHA contains hydroxyapatite (HA) crystal with 66% crystallinity degree. Conclusion: The BHA was successfully fabricated through the process of calcination. Based on the characterization and analysis using SEM-EDX and XRD tests of BHA, it had the potential as socket preservation material to preserve alveolar bone after tooth extraction. Clinical significance: The addition of BHA after tooth extraction has the potential to maintain alveolar bone quality and prevent dimension loss. This biomaterial helps and supports prosthesis treatment, such as implants, which need good alveolar bone quantity and quality.


PDF Share
  1. Kementrian Kesehatan RI Badan Penelitian dan Pengembangan Kesehatan. Laporan Nasional Riskesdas 2018. Lembaga Penerbit Badan dan Pengembangan Kesehatan; 2019. p. 186–187.
  2. Lin HK, Pan YH, Salamanca E, et al. Prevention of bone resorption by ha/β-tcp + collagen composite after tooth extraction: a case series. Int J Environ Res Public Health 2019;16(23):4616. DOI: 10.3390/ijerph16234616
  3. Hansson S, Halldin A. Alveolar ridge resorption after tooth extraction: a consequence of a fundamental principle of bone physiology. J Dent Biomech 2012;3:1758736012456543. DOI: 10.1177/1758736012456543
  4. Kassim B, Ivanovski S, Mattheos N. Current perspectives on the role of ridge (socket) preservation procedures in dental implant treatment in the aesthetic zone. Aust Dent J 2014;59(1):48–56. DOI: 10.1111/adj.12098
  5. Pereira MFA. Advances Using Hydroxyapatite as a Biomaterial in Bone Regeneration. Universidade Catolica Portuguesa. 2014.
  6. Tolstunov L. Horizontal Alveolar Ridge Augmentation in Implant Dentistry: A Surgical Manual [Internet]. DMD LTD, editor. Hoboken, New Jersey: John Wiley & Sons, Inc. 2016. Available from: http://doi.wiley.com/10.1002/9781119019916
  7. Arifin A, Mahyudin F, Edward M. The clinical and radiological outcome of bovine hydroxyapatite (bio hydrox) as bone graft. J Orthop Traumat Surabaya 2020;9(1):9. DOI: 10.20473/joints.v9i1.2020.9-16
  8. Darwis D, Warastuti Y. Sintesis dan karakterisasi Komposit Hidroksiapatit (HA) sebagai graft tulang sintetik. J Ilm Apl Isotop Radiasi 2008;4(2):143–153. DOI: 10.17146/jair.2008.4.2.549
  9. do Desterro Fde P, Sader MS, Soares GD, et al. Can inorganic bovine bone grafts present distinct properties? Braz Dent J 25(4):282–288. DOI: 10.1590/0103-6440201300067
  10. Barakat NAM, Khil MS, Omran AM, et al. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Proces Technol 2009;209(7):3408–3415. DOI: 10.1016/j.jmatprotec.2008.07.040
  11. Mohammed A, Abdullah A. Scanning electron microscopy (SEM): a Review. 2019.
  12. Anugrah G, Azis Y. Sintesis hidroksiapatit dari precipitated calcium carbonate (PCC) terumbu Karang Melalui Proses Presipitasi Dengan Variasi Rasio CA/P dan Ph Reaksi. Jom FTEKNIK. 2018;5(2).
  13. Stanjek H, Häusler W. Basics of X-ray diffraction. Hyperfine Interactions 2004;154:107–119. DOI: 10.1023/B:HYPE.0000032028.60546.38
  14. Pagni G, Pellegrini G, Giannobile WV, et al. Postextraction alveolar ridge preservation: biological basis and treatments. Int J Dent 2012(1):151030. DOI: 10.1155/2012/151030
  15. Dym H, Huang D, Stern A. Alveolar bone grafting and reconstruction procedures prior to implant placement. Dent Clin North Am 2012;56(1):209-218, x. DOI: 10.1016/j.cden.2011.09.005. PMID: 22117951.
  16. Linetskiy I, Demenko V, Linetska L, et al. Impact of annual bone loss and different bone quality on dental implant success – a finite element study. Comput Biol Med 2017;91:318–325. DOI: https://doi.org/10.1016/j.compbiomed.2017.09.016
  17. Fee L. Socket preservation. Br Dent J 2017;222(8):579–582. DOI: 10.1038/sj.bdj.2017.355
  18. Fickl S, Zuhr O, Wachtel H, et al. Dimensional changes of the alveolar ridge contour after different socket preservation techniques. J Clin Periodontol 2008;35(10):906–913. DOI: 10.1111/j.1600-051x.2008.01305.x
  19. Ratnayake JTB, Gould ML, Shavandi A, et al. Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. J Biomed Mater Res B Appl Biomat 2017;105(5):1054–1062. DOI: 10.1002/jbm.b.33644
  20. Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater 2019;17(2):2280800019836829. DOI: 10.1177/2280800019836829
  21. Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mate 2019;17(2). DOI: 10.1177/2280800019836829
  22. Khotib J, Lasandara CS, Samirah S, et al. Acceleration of bone fracture healing through the use of natural bovine hydroxyapatite implant on bone defect animal model. Folia Medica Indonesiana 2019;55(3):176. DOI: 10.20473/fmi.v55i3.15495
  23. Badan Pusat Statistik Produksi Daging Sapi menurut Provinsi (Ton), 2018–2020 [Internet]. [cited 2022 Jan 26 2022]. Available from: https://www.bps.go.id/indicator/24/480/1/produksi-daging-sapi-menurut-provinsi.html
  24. Fatah WM. Perbandingan indek perdagingan sapi-sapi Indonesia (Sapi Bali, Madura, PO) dengan Sapi Australian Commercial Cross (ACC). J Animal Sci Padjadaran Univ 2007;7(1).
  25. Badan Pusat Statistik Jumlah Ternak yang Dipotong di RPH dan Di Luar RPH yang Dilaporkan (Ekor), 2018–2020 [Internet]. [cited 2022 Jan 25 2022]. Available from: https://www.bps.go.id/indicator/24/354/1/jumlah-ternak-yang-dipotong-di-rph-dan-di-luar-rph-yang-dilaporkan.html
  26. Ramirez-Gutierrez CF, Palechor-Ocampo AF, Londoño-Restrepo SM, et al. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone. J Biomed Materi Res B Appl Biomater 2016;104(2):339–344. DOI: 10.1002/jbm.b.33401
  27. Khoo W, Nor FM, Ardhyananta H, et al. Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures. Procedia Manufacturing 2015;2:196–201. DOI: 10.1016/j.promfg.2015.07.034
  28. Haberko K, Bućko MM, Brzezińska-Miecznik J, et al. Natural hydroxyapatite - its behaviour during heat treatment J Eur Ceram Soc 2006;26(4-5):537–542. DOI: 10.1016/j.jeurceramsoc.2005.07.033
  29. Nishikawa H. Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics. Mater Letters 2001;50(5):364–370. DOI: 10.1016/S0167-577X(01)00318-4
  30. Bal Z, Kaito T, Korkusuz F, et al. Bone regeneration with hydroxyapatite-based biomaterials. Emerg Mater 2019;3(6):521–544. DOI: 10.1007/s42247-019-00063-3
  31. Silva RV, Camilli JA, Bertran CA, et al. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 2005;34(2):178–184. DOI: 10.1016/j.ijom.2004.06.005
  32. Choudhary OP, Choudhary P. Scanning electron microscope: advantages and disadvantages in imaging components. Int J Current Microbiol Appl Sci 2017;6(5):1877–1882. DOI: 10.20546/ijcmas.2017.605.207
  33. Ruksudjarit A, Pengpat K, Rujijanagul G, et al. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phy 2008;8(3-4):270–272. DOI: 10.1016/j.cap.2007.10.076
  34. Matsiko A, Gleeson JP, O’Brien FJ. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A 2015;21(3-4):486–497. DOI: 10.1089/ten.TEA.2013.0545
  35. Huang Y, Zhou G, Zheng L, et al. Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale 2012;4(7):2484–2490. DOI: 10.1039/c2nr12072k
  36. Ngo PD. Energy Dispersive Spectroscopy. In: Failure Analysis of Integrated Circuits [Internet]. Boston, MA: Springer US; 1999. p. 205–15. Available from: http://link.springer.com/10.1007/978-1-4615-4919-2_12
  37. Shindo D, Oikawa T. Energy dispersive x-ray spectroscopy. in: analytical electron microscopy for materials science [Internet]. Tokyo: Springer Japan; 2002. p. 81–102. Available from: http://link.springer.com/10.1007/978-4-431-66988-3_4
  38. Maidaniuc A, Miculescu F, Voicu SI, et al. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles. Appl Surf Sci 2018;438:158–166. DOI: 10.13039/501100005802
  39. Jaber HL, Kovács TA. Preparation and synthesis of hydroxyapatite bio-ceramic from bovine bone by thermal heat treatment. Epitoanyag: JSBCM 2019;71(3):98–101. DOI: 10.14382/epitoanyag-jsbcm.2019.18
  40. Piccirillo C, Silva MF, Pullar RC, et al. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater Sci Eng C Mater Biol Appl 2013;33(1):103–110. DOI: 10.1016/j.msec.2012.08.014
  41. Bunaciu AA, Udriştioiu E gabriela,Aboul-Enein HY. X-Ray Diffraction: Instrumentation and Applications. Vol. 45, Critical Reviews in Analytical Chemistry. Taylor and Francis Ltd. 2015. p. 289–299.
  42. Gates-Rector S, Blanton T. The powder diffraction file: a quality materials characterization database. Powd Diffract 2019;34(4):352–360. DOI: 10.1017/S0885715619000812
  43. Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Proces Technol 2008;202(1-3):536–542. DOI: 10.1016/j.jmatprotec.2007.10.004
  44. Lee SW, Kim SG, Balázsi C, et al. Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113(3):348–355. DOI: 10.1016/j.tripleo.2011.03.033
  45. Overgaard S, Bromose U, Lind M, et al. The influence of crystallinity of the hydroxyapatite coating on the fixation of implants. Mechanical and histomorphometric results. J Bone Joint Surg BR 1999;81(4):725–731. DOI: 10.1302/0301-620x.81b4.9282
  46. Seckler MM, Danese M, Derenzo S, et al. Influence of process conditions on hydroxyapatite crystallinity obtained by direct crystallization. Mater Res 1999;2(2): DOI: 10.1590/S1516-14391999000200003
  47. Geistlich Bio-Oss® [Internet]. [cited, 2022 Feb 4 2022]. Available from: https://www.geistlich-pharma.com/dental/bone-substitutes/geistlich-bio-oss/
  48. Pokhrel S. Hydroxyapatite: preparation, properties and its biomedical applications. Adv Chem Eng Sci 2018;8(4):225–240. DOI: 10.4236/aces.2018.84016
  49. Bal Z, Kaito T, Korkusuz F, et al. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater 2020;3(4):521–544. DOI: http://dx.doi.org/10.1007/s42247-019-00063-3
  50. Werber KD, Brauer RB, Weiss W, et al. Osseous integration of bovine hydroxyapatite ceramic in metaphyseal bone defects of the distal radius. J Hand Surg Am 2000;25(5):833–841. DOI: 10.1053/jhsu.2000.16354
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.