World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 6 ( November-December, 2022 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Linear Dimensional Stability of Monomethacrylate-based Dental Polymer Containing a Novel Tricyclic Diacrylate Cross-linker Using a Novel Surface-level Index Technique

Ranganthan Ajay, Vikraman Rakshagan, Ramajayam Sasikala, Kandasamy Baburajan, Gnanasambandam Kalarani, Karthigeyan Suma

Keywords : Copolymer, Cycloaliphatic, Denture base, Dimensional stability, Linear shrinkage

Citation Information : Ajay R, Rakshagan V, Sasikala R, Baburajan K, Kalarani G, Suma K. Evaluation of Linear Dimensional Stability of Monomethacrylate-based Dental Polymer Containing a Novel Tricyclic Diacrylate Cross-linker Using a Novel Surface-level Index Technique. World J Dent 2022; 13 (6):568-573.

DOI: 10.5005/jp-journals-10015-2106

License: CC BY-NC 4.0

Published Online: 26-08-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim and objectives: To evaluate and compare the linear dimensional stability of denture base copolymer containing a cycloaliphatic comonomer by employing conventional engraving technique (ET) and a novel surface-level index technique (SLIT). Materials and methods: Group I employed the SLIT and group II employed the ET. The subgroups were divided under both groups based on the: (1) Cycloaliphatic comonomer's concentrations (SG0, SG10, SG20, EG0, EG10, and EG20); (2) Corresponding mold spaces (SM0, SM10, SM20, EM0, EM10, and EM20). Rectangular mold spaces with four reference points were measured using the Euclidean norm. A total of 120 rectangular specimens (n = 20 for each subgroup) were fabricated and the distances between the reference points in the specimens were measured. The differences between the Euclidean norms of the molds and the resultant specimens were recorded. Results: A significant difference in the linear distortion between the techniques till 10% TCDDMDA comonomer concentration was observed beyond which there is no difference between the techniques. Within the techniques, a statistically significant difference in the linear distortion among and between the subgroups was evident. Conclusion: Employing the SLIT showed an amplified linear distortion of the denture base specimens when compared to ET. The novel copolymer P(MMA-Co-TCDDMDA) with 20% TCDDMDA demonstrated negligible linear dimensional distortion with either technique. Clinical significance: Employing P(MMA-Co-TCDDMDA) copolymer as denture base shall not only offset dimensional and occlusal inaccuracies but also improve the retention and stability of the denture base and eventually the life quality of the edentulous population.


PDF Share
  1. Ranganath LM, Shet RGK, AG Rajesh, et al. The effect of fiber reinforcement on the dimensional changes of poly methyl methacrylate resin after processing and after immersion in water: an in vitro study. J Contemp Dent Pract 2011;12(4):305–317. DOI: 10.5005/jp-journals-10024-1051
  2. Baydas S, Bayindir F, Akyil MS. Effect of processing variables (different compression packing processes and investment material types) and time on the dimensional accuracy of polymethyl methacrylate denture bases. Dent Mater J 2003;22(2):206–213. DOI: 10.4012/dmj.22.206
  3. Naik P, Mathur S. An in vitro study evaluating the effect of addition of carbon nanotubes on linear dimensional change of heat - polymerized denture base resin. Natl J Integr Res Med 2017;8(2): 65–68. http://nicpd.ac.in/ojs-/index.php/njirm/article/view/1205.
  4. Duymus ZY, Yanikoglu ND. Influence of a thickness and processing method on the linear dimensional change and water sorption of denture base resin. Dent Mater J 2004;23(1):8–13. PMID: 15164918.
  5. Chen JC, Lacefield WR, Castleberry DJ. Effect of denture thickness and curing cycle on the dimensional stability of acrylic resin denture bases. Dent Mater 1988:4(1):20–24. DOI: 10.1016/s0109-5641(88)80083-6
  6. Grunewald AH, Paffenbarger GC, Dickson G. The effect of molding processes on some properties of denture resins. J Am Dent Assoc 1952;44(3):269–284. DOI: 10.1016/s0002-8177(52)43004-4
  7. Begum SS, Ajay R, Devaki V, et al. Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: an in vitro study. J Pharm Bioallied Sci 2019;11(Suppl 2):S365–S370. DOI: 10.4103/JPBS.JPBS_36_19
  8. Aljafery AMA, Basima MAH. Effect of addition ZrO2-Al2O3 nanoparticles mixture on some properties and denture base adaptation of heat-cured acrylic resin denture base material. J Bagh Coll Dentistry 2015;27(3):15–21. DOI: 10.12816/0015028
  9. Carroll CE, Von Fraunhofer JA. Wire reinforcement of acrylic resin prostheses. J Prosthet Dent 1984;52(5):639–641. DOI: 10.1016/0022-3913(84)90132-x
  10. Ruffino AR. Effect of steel strengtheners on fracture resistance of the acrylic resin complete denture base. J Prosthet Dent 1985;54(1):75–78. DOI: 10.1016/s0022-3913(85)80074-3
  11. Vallittu PK, Lassila VP. Effect of metal strengthener's surface roughness on fracture resistance of acrylic denture base material. J Oral Rehabil 1992;19(4):385–391. DOI: 10.1111/j.1365-2842.1992.tb01580.x
  12. Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures. J Oral Rehabil 1999;26(3):185–194. DOI: 10.1046/j.1365-2842.1 999.00375.x
  13. Sehajpal SB, Sood VK. Effect of metal fillers on some physical properties of acrylic resin. J Prosthet Dent 1989;61(6):746–751. DOI: 10.1016/s0022-3913(89)80055-1
  14. Ellakwa AE, Morsy MA, El-Sheikh AM. Effect of aluminum oxide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. J Prosthodont 2008;17(6):439–444. DOI: 10.1111/j.1532-849X.2008.00318.x
  15. DeBoer J, Vermilyea SG, Brady RE. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J Prosthet Dent 1984;51(1):119–121. DOI: 10.1016/s0022-3913(84)80117-1
  16. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl 2):S112–S125. DOI: 10.4103/JPBS.JPBS_34_19
  17. Umemoto K, Kurata S. Basic study of a new denture base resin applying hydrophobic methacrylate monomer. Dent Mater J 1997;16(1):21–30. DOI: 10.4012/dmj.16.21
  18. Ajay R, Suma K, Jayakrishnakumar S, et al. Chemical characterization of denture base resin with a novel cycloaliphatic monomer. J Contemp Dent Pract 2019;20(8):940–946. PMID: 31797851. DOI: 10.5005/jp-journals-10024-2634
  19. Ajay R, Suma K, Sasikala R, et al. Chemical structure and physical properties of heat-cured poly(methyl methacrylate) resin processed with cycloaliphatic comonomer: an in vitro study. J Contemp Dent Pract 2020;21(3):285–290. PMID: 32434976. DOI: 10.5005/jp-journals-10024-2769
  20. Ajay R, Suma K, Rahila C, et al. Effect of novel cycloaliphatic comonomer on the flexural and impact strength of heat-cure denture base resin. J Oral Sci 2021;63(1):14–17. DOI: 10.2334/josnusd.19-0493
  21. Ajay R, Suma K, Rakshagan V, et al. Effect of novel cycloaliphatic comonomer on surface roughness and surface hardness of heat-cure denture base resin. J Pharm Bioallied Sci 2020;12(Suppl 1):S67–S72. DOI: 10.4103/jpbs.JPBS_20_20
  22. Ajay R, Suma K, SreeVarun M, et al. Evaluation of In vitro cytotoxicity of heat-cure denture base resin processed with a dual-reactive cycloaliphatic monomer. J Contemp Dent Pract 2019;20(11):1279–1285. PMID: 31892679. DOI: 10.5005/jp-journals-10024-2688
  23. Ajay R, Suma K, Arulkumar S, et al. Histocompatibility of novel cycloaliphatic comonomer in heat-cured denture base acrylic resin: histomorphometric analysis in rats. J Pharm Bioallied Sci 2020;12(Suppl 1):S453–S461. DOI: 10.4103/jpbs.JPBS_139_20
  24. Salim S, Sadamori S, Hamada T. The dimensional accuracy of rectangular acrylic resin specimens cured by three denture base processing methods. J Prosthet Dent 1992;67(6):879–881. DOI: 10.1016/0022-3913(92)90606-b
  25. Dixon DL, Breeding LC, Ekstrand KG. Linear dimensional variability of three denture base resins after processing and in water storage. J Prosthet Dent 1992;68(1):196–200. DOI: 10.1016/0022-39 13(92)90304-s
  26. O'Toole TJ, Furnish GM, von Fraunhofer JA. Linear distortion of acrylic resin. J Prosthet Dent 1985;53(1):53–55. DOI: 10.1016/0022-3913(85)90065-4
  27. Gharechahi J, Asadzadeh N, Shahabian F, et al. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique. J Dent (Tehran) 2014;11(4):398–405. PMID: 25584050.
  28. Ristau B. Shrinkage and warpage of denture base materials using the Ristau Platform and the Ristau Post Dam. Quintessence Dent Technol 1981;5(7):671–674. PMID: 7029670.
  29. Polyzois GL. Improving the adaptation of denture bases by anchorage to the casts: a comparative study. Quintessence Int 1990;21(3):185–190. PMID: 2197666.
  30. Jow J. Mechanical undercuts as a means of decreasing shrinkage in the postpalatal seal region of the maxillary denture. J Prosthet Dent 1989;62(1):110–115. DOI: 10.1016/0022-3913(89)90054-1
  31. Laughlin GA, Eick JD, Glaros AG, et al. A comparison of palatal adaptation in acrylic resin denture bases using conventional and anchored polymerization techniques. J Prosthodont 2001;10(4): 204–211. DOI: 10.1111/j.1532-849x.2001.00204.x
  32. Gowman DJ, Cornelljpowers CM. Effect of composition on dimensional stability of denture bases. J Am Dent Assoc 1965;70:1200–1203. DOI: 10.14219/jada.archive.1965.0207
  33. Wolfaardt J, Cleanton-Jones P, Fatti P. The influence of processing variables on dimensional changes of heat-cured poly(methyl methacrylates). J Prosthet Dent 1986;55(4):518–525. DOI: 10.1016/0022-3913(86)90191-5
  34. Shah RJ, Lagdive SB, Machchhar AH, et al. Comparison of dimensional changes of compression molded vs Injection-molded heat-cured resin with different thicknesses. Int J Dent Sci Innov Res 2020;3(1):170–177. https://www.ijdsir.com/asset/images/uploads/1580056871931.pdf
  35. Goodkind RJ, Schulte RC. Dimensional accuracy of pour acrylic resin and conventional processing of cold-curing acrylic resin bases. J Prosthet Dent 1970;24(6):662–668. DOI: 10.1016/0022-3913(70)90103-4
  36. Consani RL, Domitti SS, Rizzatti Barbosa CM, et al. Effect of commercial acrylic resins on the dimensional accuracy of the maxillary denture base. Braz Dent J 2002;13(1):57–60. PMID: 11870965.
  37. Miéssi AC, Goiato MC, dos Santos DM, et al. Influence of storage period and effect of different brands of acrylic resin on the dimensional accuracy of the maxillary denture base. Braz Dent J 19(3):204–208. DOI: 10.1590/s0103-64402008000300005
  38. Duymuş ZY, Yanikoğlu ND. The investigation of solubility values, water sorption, and bond strength of auto-polymerizing and heat polymerizing acrylic resin materials. Eur J Prosthodont Restor Dent 2006;14(3):116–120. PMID: 170249.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.