World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 4 ( July-August, 2022 ) > List of Articles

REVIEW ARTICLE

Role of Bone Marrow Mesenchymal Stromal Cells (BMMSCs) in Osseointegration among Diabetic Patients with Dental Implants

Nabeeh A Al Qahtani

Keywords : Bone marrow mesenchymal stromal cells (BMMSCs), Dental implants, Diabetic patients, Osseointegration, Osteogenic potential

Citation Information : Al Qahtani NA. Role of Bone Marrow Mesenchymal Stromal Cells (BMMSCs) in Osseointegration among Diabetic Patients with Dental Implants. World J Dent 2022; 13 (4):425-431.

DOI: 10.5005/jp-journals-10015-2072

License: CC BY-NC 4.0

Published Online: 18-06-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim: This review aims to explore the literature regarding the potential of bone marrow mesenchymal stromal cells (BMMSCs) in enhancing the osseointegration of dental implants among diabetic patients. Background: Dental implants are a viable and popular option in oral rehabilitation. Various factors such as local, systemic, mechanical, and prosthetic factors play a crucial role in the successful osseointegration of dental implants. Diabetes mellitus (DM) is known to affect the survival of dental implants. Among the various methods developed to improve the survival rates in DM, bone marrow mesenchymal stem cells (BMMSCs) are gaining attention for their regenerative purposes. That could strengthen the osseointegration process in patients with DM. Review results: This review identified significant studies describing the effects of diabetes on stem cells and thereby affecting osseointegration. We identified studies that reported DM to have a negative impact on osseointegration of dental implants. We also found evidence that BMMSCs can improve the implant survival rate by enhancing osseointegration. Further, various methods of stem cell culture and scaffolds are discussed. Though the BMMSCs-coated implants improve implant survival rates, we could find only a few studies of stem cell-coated implants in diabetes. They show a positive result in diabetic subjects. Conclusion: Within the limitation of this comprehensive review, it can be concluded that BMMSCs enhance the osseointegration of dental implants among diabetic patients when their medical condition is wellcontrolled. Further double-blinded randomized controlled clinical trials are warranted to establish the clinical applicability of BMMSCs in dental implants in various systemic conditions. Clinical significance: Though literature supports implants in DM, many studies have proven the impaired osseointegration in DM. This review elaborates on the impactful role of BMMSCs in promoting the osseointegration of the implants placed in well-controlled diabetic patients.


PDF Share
  1. Gaviria L, Salcido JP, Guda T, et al. Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg 2014;40(2):50–60. DOI: 10.5125/jkaoms.2014.40.2.50
  2. Mishra SK, Chowdhary R, Chrcanovic BR, et al. Osseoperception in dental implants: a systematic review. J Prosthodont 2016;25(3):185–195. DOI: 10.1111/jopr.12310
  3. Griggs JA. Dental Implants. Dent Clin North Am 2017;61(4):857–871. DOI: 10.1016/j.cden.2017.06.007
  4. Naujokat H, Kunzendorf B, Wiltfang J. Dental implants and diabetes mellitus-a systematic review. Int J Implant Dent 2016;2(1):5. DOI: 10.1186/s40729-016-0038-2
  5. Yamawaki I, Taguchi Y, Komasa S, et al. Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium. J Periodontal Res 2017;52(4):761–771. DOI: 10.1111/jre.12446
  6. Buduru SD, Gulei D, Zimta AA, et al. The potential of different origin stem cells in modulating oral bone regeneration processes. J Periodontal Res 2019;8(1):29. DOI: 10.3390/cells8010029
  7. Bansal R, Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med 2015;6(1):29–34. DOI: 10.4103/0976-9668.149074
  8. Paz AG, Maghaireh H, Mangano FG. Stem cells in dentistry: types of intra- and extraoral tissue-derived stem cells and clinical applications. Stem Cells Int 2018;2018:4313610. DOI: 10.1155/2018/4313610
  9. Huo SC, Yue B. Approaches to promoting bone marrow mesenchymal stem cell osteogenesis on orthopedic implant surface. World J Stem Cells 2020;12(7):545–561. DOI: 10.4252/wjsc.v12.i7.545
  10. Gonçalves AM. Dental medicine applications of stem cells. 2017;1:1–11.
  11. El-Bialy T, Alhadlaq A, Felemban N, et al. The effect of light-emitting diode and laser on mandibular growth in rats. Angle Orthod 2015;85(2):233–238. DOI: 10.2319/030914-170.1
  12. Egido Moreno S, Roca Umbert JV, Céspedes Sánchez JM, et al. Clinical application of mesenchymal stem cells in bone regeneration in oral implantology. Systematic review and meta-analysis. Int J Environ Res Public Health 2021.
  13. Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc 2013;13(1):2–6. DOI: 10.1007/s13191-013-0252-z
  14. Zheng C, Chen J, Liu S, et al. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 2019;11(3):23. DOI: 10.1038/s41368-019-0060-3
  15. Mavrogenis AF, Dimitriou R, Parvizi J, et al. Biology of implant osseointegration. J Musculoskelet Neuronal Interact 2009;9(2):61–71. DOI: 10.1111/j.1600-0757.1994.tb00006.x
  16. Aghaloo T, Pi-Anfruns J, Moshaverinia A, et al. The effects of systemic diseases and medications on implant osseointegration: a systematic review. Int J Oral Maxillofac Implants 2019;34:s35–s49. DOI: 10.11607/jomi.19suppl.g3
  17. Daubert DM, Weinstein BF, Bordin S, et al. Prevalence and predictive factors for peri-implant disease and implant failure: a cross-sectional analysis. J Periodontol 2015;86(3):337–347. DOI: 10.1902/jop.2014.140438
  18. Wang J, Wang B, Li Y, et al. High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J 2013;12:584–597. DOI: 10.3389/fmolb.2021.745035
  19. Liu X, Tan N, Zhou Y, et al. Delivery of antagomiR204-conjugated gold nanoparticles from PLGA sheets and its implication in promoting osseointegration of titanium implant in type 2 diabetes mellitus. Int J Nanomedicin 2017;12:7089–7101. DOI: 10.2147/IJN.S124584
  20. Chen L, Shen R, Komasa S, et al. Drug-loadable calcium alginate hydrogel system for use in oral bone tissue repair. Int J Mol Sci 2017;18(5):989. DOI: 10.3390/ijms18050989
  21. Tang D, Wang E, Xu Y, et al. Is hyperglycemia the only risk factor for implant in type 2 diabetics during the healing period? Oral Dis 2021;27(6):1551–1563. DOI: 10.1111/odi.13685
  22. Sun R, Liang C, Sun Y, et al. Effects of metformin on the osteogenesis of alveolar BMSCs from diabetic patients and implant osseointegration in rats. Oral Dis 2021. DOI: 10.1111/odi.13808
  23. Liang C, Sun R, Xu Y, et al. Effect of the abnormal expression of BMP-4 in the blood of diabetic patients on the osteogenic differentiation potential of alveolar BMSCs and the rescue effect of metformin: a bioinformatics-based study. Biomed Res Int 2020:7626215. DOI: 10.1155/2020/7626215
  24. Aguilar-Salvatierra A, Calvo-Guirado JL, Gonzalez-Jaranay M, et al. Peri-implant evaluation of immediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study. Clin Oral Implants Res 2016;27(2):156–161. DOI: 10.1111/clr.12552
  25. Al Amri MD, Kellesarian SV, Al-Kheraif AA, et al. Effect of oral hygiene maintenance on HbA1c levels and peri-implant parameters around immediately-loaded dental implants placed in type-2 diabetic patients: 2 years follow-up. Clin Oral Implants Res 2016;27(11):1439–1443. DOI: 10.1111/clr.12758
  26. Alsahhaf A, Alshiddi IF, Alshagroud RS, et al. Clinical and radiographic indices around narrow diameter implants placed in different glycemic-level patients. Clin Implant Dent Relat Res 2019;21(4):621–626. DOI: 10.1111/cid.12778
  27. Cabrera-Domínguez J, Castellanos-Cosano L, Torres-Lagares D, et al. A prospective case-control clinical study of titanium-zirconium alloy implants with a hydrophilic surface in patients with Type 2 diabetes mellitus. Int J Oral Maxillofac Implants 2017;32(5):1135–1144. DOI: 10.11607/jomi.5577
  28. Cabrera-Domínguez JJ, Castellanos-Cosano L, Torres-Lagares D, et al. Clinical performance of titanium-zirconium implants with a hydrophilic surface in patients with controlled type 2 diabetes mellitus: 2-year results from a prospective case-control clinical study. Clinical oral investigations 2020;24(7):2477–2486. DOI: 10.1007/s00784-019-03110-9
  29. Gómez-Moreno G, Aguilar-Salvatierra A, Rubio Roldán J, et al. Peri-implant evaluation in type 2 diabetes mellitus patients: a 3-year study. Clin Oral Implants Res 2015;26(9):1031–1035. DOI: 10.1111/clr.12391
  30. Al Zahrani S, Al Mutairi AA. Stability and bone loss around submerged and non-submerged implants in diabetic and non-diabetic patients: a 7-year follow-up. Braz Oral Res 2018;32:e57. DOI: 10.1590/1807-3107bor-2018.vol32.0057
  31. Bignozzi I, Ciobanu G, Quaranta A, et al. Dental implant sites in healthy versus diabetic subjects: a two-year clinical and bacteriological assessment. Eur 2013;11(3):813–823. DOI: 10.1177/1721727X1301100324
  32. Tatarakis N, Kinney JS, Inglehart M, et al. Clinical, microbiological, and salivary biomarker profiles of dental implant patients with type 2 diabetes. Clin Oral Implants Res 2014;25(7):803–812. DOI: 10.1111/clr.12139
  33. Abduljabbar T, Al-Sahaly F, Al-Kathami M, et al. Comparison of periodontal and peri-implant inflammatory parameters among patients with prediabetes, type 2 diabetes mellitus and non-diabetic controls. Acta Odontol Scand 2017;75(5):319–324. DOI: 10.1080/00016357.2017.1303848
  34. Al-Sowygh ZH, Al-Kheraif AA, Akram Z, et al. Peri-implant soft tissue inflammatory parameters and crestal bone loss among waterpipe (narghile) smokers and never-smokers with and without type 2 diabetes mellitus. J Periodontol 2018;89(6):645–652. DOI: 10.1002/JPER.17-0554
  35. Moraschini V, Barboza ES, Peixoto GA. The impact of diabetes on dental implant failure: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 2016;45(10):1237–1245. DOI: 10.1016/j.ijom.2016.05.019
  36. Gerritsen M, Lutterman JA, Jansen JA. Wound healing around bone-anchored percutaneous devices in experimental diabetes mellitus. J Biomed Mater Res 53(6):702–709. DOI: 10.1002/1097-4636(2000)53:6<702::aid-jbm13>3.0.co;2-v
  37. Dubey RK, Gupta DK, Singh AK. Dental implant survival in diabetic patients; review and recommendations. Natl J Maxillofac Surg 2013;4(2):142–150. DOI: 10.4103/0975-5950.127642
  38. Duan Y, Ma W, Li D, et al. Enhanced osseointegration of titanium implants in a rat model of osteoporosis using multilayer bone mesenchymal stem cell sheets. Exp Ther Med 2017;14(6):5717–5726. DOI: 10.3892/etm.2017.5303
  39. Alqahtani N, Chandramoorthy HC, Shaik S, et al. Bone marrow mesenchymal stromal cells (BMMSCs) augment osseointegration of dental implants in Type 1 diabetic rabbits: an X-ray micro-computed tomographic evaluation. Medicina (Kaunas) 2020;56(4):148. DOI: 10.3390/medicina56040148
  40. Ma D, Wang Y, Chen Y, et al. Promoting osseointegration of dental implants in dog maxillary sinus floor augmentation using dentin matrix protein 1-transduced bone marrow stem cells. Tissue Eng Regen Med 2020;17(5):705–715. DOI: 10.1007/s13770-020-00277-1
  41. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014;14(1):15–56. DOI: 10.1166/jnn.2014.9127
  42. Dimitrievska S, Bureau MN, Antoniou J, et al. Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J Biomed Mater Res 2011;98(4):576–588. DOI: 10.1002/jbm.a.32964
  43. Shen X, Ma P, Hu Y, et al. Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates. Colloids Surf B: Biointerfaces 2015;127:221–232. DOI: 10.1016/j.colsurfb.2015.01.048
  44. Kaigler D, Avila-Ortiz G, Travan S, et al. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: a randomized clinical trial. J Bone Miner Res 2015;30(7):1206–1216. DOI: 10.1002/jbmr.2464
  45. von Wilmowsky C, Moest T, Nkenke E, et al. Implants in bone: part II. research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg 2014;18(4):355–372. DOI: 10.1007/s10006-013-0397-2
  46. Bajestan MN, Rajan A, Edwards SP, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: a randomized controlled, clinical trial. Clin Implant Dent Relat Res 2017;19(5):793–801. DOI: 10.1111/cid.12506
  47. Gjerde C, Mustafa K, Hellem S, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 2018;9(1):213. DOI: 10.1186/s13287-018-0951-9
  48. Singhal L, Belludi SA, Pradhan N, et al. A comparative evaluation of the effect of platelet rich fibrin matrix with and without peripheral blood mesenchymal stem cells on dental implant stability: a randomized controlled clinical trial. J Tissue Eng Regen Med 2022;16(4):422–430. DOI: 10.1002/term.3290
  49. Ou KL, Weng CC, Wu CC, et al. Research of stemBios cell therapy on dental implants containing nanostructured surfaces: biomechanical behaviors, microstructural characteristics, and clinical trial. Implant Dent 2016;25(1):63–73. DOI: 10.1097/id.0000000000000337
  50. Weng CC, Ou KL, Wu CY, et al. Mechanism and clinical properties of stembios cell therapy: induction of early osseointegration in novel dental implants. Int J Oral Maxillofac Implants 2017;32(1):e47–e54. DOI: 10.11607/jomi.4460
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.