World Journal of Dentistry

Register      Login

VOLUME 12 , ISSUE 6 ( November-December, 2021 ) > List of Articles

REVIEW ARTICLE

Advancements in Flow Cytometry Fluidics: A Hypothesis

Sukrit Sumant, Vikrant R Patil, A Thirumal Raj, Shankargouda Patil

Keywords : Cytometry chips, Flow cytometry, Fluidics, Microfluidic Reynolds number, Two-dimensional focusing

Citation Information : Sumant S, Patil VR, Raj AT, Patil S. Advancements in Flow Cytometry Fluidics: A Hypothesis. World J Dent 2021; 12 (6):500-503.

DOI: 10.5005/jp-journals-10015-1872

License: CC BY-NC 4.0

Published Online: 24-11-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Flow cytometry is an invaluable tool to unravel the complexities of cell signaling. This article discusses the flow focusing principle behind most conventional cytometers and proposes an optimal Reynolds number range supported by published literature for increasing the accuracy of the data obtained by reducing doublets in the data. A description of the implementation of the microstructures in microfluidic cytometry chips for two-dimensional focusing along with an overview of its advantages has been presented along with how the proposed hypothesis can benefit this particle focusing scheme. Methods to test the given hypothesis have also been discussed.


PDF Share
  1. Piyasena ME, Graves SW. The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 2014;14(6):1044–1059. DOI: 10.1039/c3lc51152a.
  2. Golden JP, Justin GA, Nasir M, et al. Hydrodynamic focusing–a versatile tool. Analyt Bioanalyt Chemis 2012;402(1):325–335. DOI: 10.1007/s00216-011-5415-3.
  3. Si Salah SA, Filali EG, Djellouli S. Numerical investigation of Reynolds number and scaling effects in microchannels flows. J Hydrodyna 2017;29(4):647–658. DOI: 10.1016/S1001-6058(16)60777-1.
  4. Dziubinski M. Hydrodynamic focusing in microfluidic devices. Advances in microfluidics Kelly Ryan T, ed. IntechOpen; 2012. DOI: 10.5772/34690.
  5. Ateya DA, Erickson JS, Howell PB, et al. The good, the bad, and the tiny: a review of microflow cytometry. Analyt Bioanalyt Chem 2008;391(5):1485–1498. DOI: 10.1007/s00216-007-1827-5.
  6. Lee H-C, Hou H-H, Yang R-J. Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing. 2011;11(4):469–478. DOI: 10.1007/s10404-011-0812-7.
  7. Lindken R, Rossi M, Grosse S, et al. Micro-particle image velocimetry (microPIV): recent developments, applications, and guidelines. Lab Chip 2009;9(17):2551–2567. DOI: 10.1039/b906558j.
  8. Paddock SW. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 2000;16(2):127–149. DOI: 10.1385/MB:16:2:127.
  9. Anderson JD. VKI for FDynamics. Computational fluid dynamics: an introduction Wendt J, ed., Berlin, Heidelberg: Springer; 2008.
  10. Stadinski BD, Huseby ES. How to prevent yourself from seeing double. Cytometry Part A: J Int Society Analyt Cytol 2020;;97(11):1102–1104. DOI: 10.1002/cyto.a.24045.
  11. Mandy F, Nicholson J, Autran B, et al. T-cell subset counting and the fight against AIDS: reflections over a 20-year struggle. Cytometry 2002;50(2):39–45. DOI: 10.1002/cyto.10097.
  12. Mandy F, Bergeron M, Houle G, et al. Impact of the international program for quality assessment and standardization for immunological measures relevant to HIV/AIDS: QASI. Cytometry 2002;50(2):111–116. DOI: 10.1002/cyto. 10088.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.