World Journal of Dentistry

Register      Login

VOLUME 12 , ISSUE 5 ( September-October, 2021 ) > List of Articles

ORIGINAL RESEARCH

In Vitro Cytocompatibility of Dental Restorative Composite Resin Photopolymerized with a Novel Multifunctional Crosslinking Comonomer

Jambai Sampathkumar Sivakumar, Ranganthan Ajay, Nasir Nilofernisha, Balasubramanian Saravanakarthikeyan, Somayaji Krishnaraj, Shafie Ahamed

Keywords : Cell viability, Comonomer, Cross-linker, Cytocompatibility, Cytotoxicity

Citation Information : Sivakumar JS, Ajay R, Nilofernisha N, Saravanakarthikeyan B, Krishnaraj S, Ahamed S. In Vitro Cytocompatibility of Dental Restorative Composite Resin Photopolymerized with a Novel Multifunctional Crosslinking Comonomer. World J Dent 2021; 12 (5):403-408.

DOI: 10.5005/jp-journals-10015-1858

License: CC BY-NC 4.0

Published Online: 29-09-2021

Copyright Statement:  Copyright © 2021; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim and objective: The present research aimed to assess the cytocompatibility of a novel dental restorative composite resin (DRC) copolymer containing dipentaerythritol penta-/hexa-acrylate (DPEPHA) as comonomer by tetrazolium assay. Materials and methods: Twenty-seven photopolymerized specimens (n = 9 per group) were divided into a control G0 group (specimens without DPEPHA) and two trial groups [specimens with 20 wt% (G20) and 40 wt% (G40) DPEPHA]. Eluates from the specimens were extracted and filtered. L929 mouse fibroblasts were employed and an MTT assay was executed. Parametric tests and multiple comparison tests were utilized to analogize the average optical density (OD) and fibroblastic viability among and between the study groups, respectively. Results: A significant difference was apparent (p = 0.000) when the means of OD and cell viability of the groups were compared. The assessed parameters were higher for the trial groups than the control. The novel copolymer P(GEU-Co-DPEPHA) (trial groups) possessed higher OD and fibroblastic viability than the P(GEU) (control). Conclusion: The novel copolymer P(GEU-Co-DPEPHA) formed by the addition of DPEPHA in propriety DRC matrix was cytocompatible with L929 fibroblasts. Clinical significance: P(GEU-Co-DPEPHA) is cytocompatible with the mammalian fibroblasts. Hence, the substitution of this crosslinking comonomer would improvise the physicomechanical properties of the DRCs without compromising biocompatibility.


PDF Share
  1. Ferracane JL. Resin composite - state of the art. Dent Mater 2011;27(1):29–38. DOI: 10.1016/j.dental.2010.10.020.
  2. Beriat NC, Ertan AA, Canay S, et al. Effect of different polymerization methods on the cytotoxicity of dental composites. Eur J Dent 2010;4(3):287–292. DOI: 10.1055/s-0039-1697841.
  3. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995;6(4):302–318. DOI: 10.1177/10454411950060040301.
  4. Peutzfeldt A. Resin components in dentistry: the monomer systems. Eur J Oral Sci 1997;105(2):97–116. DOI: 10.1111/j.1600-0722.1997.tb00188.x.
  5. Rueggerberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent 2002;87(4):364–379. DOI: 10.1067/mpr.2002.123400.
  6. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 2008;12(1):1–8. DOI: 10.1007/s00784-007-0162-8.
  7. Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 2000;11(3):333–355. DOI: 10.1177/10454411000110030401.
  8. Scott A, Egner W, Gawkrodger DJ, et al. The national survey of adverse reactions to dental materials in the UK: a preliminary study by the UK Adverse Reactions Reporting Project. Br Dent J 2004;24(196):471–477. DOI: 10.1038/sj.bdj.4811176.
  9. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994;21(4):441–452. DOI: 10.1111/j.1365-2842.1994.tb01158.x.
  10. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric resin-derived products. Crit Rev Oral Biol Med 2001;12(2):136–151. DOI: 10.1177/10454411010120020401.
  11. Hume WR, Gerzina TM. Bioavailability of components resin-based materials which are applied to teeth. Crit Rev Oral Biol Med 1996;7(2):172–179. DOI: 10.1177/10454411960070020501.
  12. Eliades G, Eliades T, Vavuranakis M. General aspects of biomaterial surface alterations following exposure to biologic fluids. In: Eliades G, Eliades T, Brantley WA, et al., ed. Dental materials in vivo: aging and related phenomena. Chicago, IL: Quintessence; 2003. p. 3–20.
  13. Moon HJ, Lee YK, Lim BS, et al. Effects of various light curing methods on the leachability of uncured substances and hardness of a composite resin. J Oral Rehabil 2004;31(3):258–264. DOI: 10.1111/j.1365-2842.2004.01172.x.
  14. Engelmann J, Leyhausen G, Leibfritz D, et al. Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J Dent Res 2001;80(3):869–875. DOI: 10.1177/00220345010800030501.
  15. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006;85(10):870–877. DOI: 10.1177/154405910608501001.
  16. Kleinsasser NH, Harréus UA, Kastenbauer ER, et al. Mono(2-ethylhexyl)phthalate exhibits genotoxic effects in human lymphocytes and mucosal cells of the upper aerodigestive tract in the comet assay. Toxicol Lett 2004;148(1-2):83–90. DOI: 10.1016/j.toxlet.2003. 12.013.
  17. Geurtsen W, Lehmann F, Spahl W, et al. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41(3):474–480. DOI: 10.1002/(sici)1097-4636(19980905)41:33.0.co;2-i.
  18. Wada H, Tarumi H, Imazato S, et al. In vitro estrogenicity of resin composites. J Dent Res 2004;83(3):222–226. DOI: 10.1177/154405910408300307.
  19. Tarumi H, Imazato S, Marimatsu M, et al. Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J Dent Res 2000;79(11):1838–1843. DOI: 10.1177/00220345000790110401.
  20. Lewis JB, Rueggeberg FA, Lapp CA, et al. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Invest 1999;3(3):107–113. DOI: 10.1007/s007840050087.
  21. Geurtsen W, Leyhausen G. Biological aspects of root canal filling materials-histocompatibility, cytotoxicity, and mutagenicity. Clin Oral Invest 1997;1(1):5–11. DOI: 10.1007/s007840050002.
  22. Schweikl H, Schmalz G, Weinmann W. The induction of gene mutations and micronuclei by oxiranes and siloranes in mammalian cells in vitro. J Dent Res 2004;83(1):17–21. DOI: 10.1177/154405910408300104.
  23. Kostoryz EL, Tong PY, Straulman AF, et al. Effects of dental resins on TNF-a-induced ICAM-1 expression in endothelial cells. J Dent Res 2001;80(9):1789–1792. DOI: 10.1177/00220345010800090301.
  24. Schmalz G, Schuster U, Schweikl H. Influence of metals on IL-6 release in vitro. Biomaterials 1998;19(18):1689–1694. DOI: 10.1016/s0142-9612(98)00075-1.
  25. Rakich DR, Wataha JC, Lefebvre CA, et al. Effect of dentin bonding agents on the secretion of inflammatory mediators from macrophages. J Endodont 1999;25(2):114–117. DOI: 10.1016/S0099-2399(99)80008-9.
  26. Ferracane JL, Greener EH. Fourier transform infrared analysis of degree of polymerization in unfilled resins - methods comparison. J Dent Res 1984;63(8):1093–1095. DOI: 10.1177/00220345840630081901.
  27. Trujillo M, Newman SM, Stansbury JW. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent Mater 2004;20(8):766–777. DOI: 10.1016/j.dental.2004.02.003.
  28. Knezević A, Tarle Z, Meniga A, et al. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil 2001;28(6):586–591. DOI: 10.1046/j.1365-2842.2001.00709.x.
  29. Imazato S, McCabe JF, Tarumi H, et al. Degree of conversion of composites measured by DTA and FTIR. Dent Mater 2001;17(2):178–183. DOI: 10.1016/s0109-5641(00)00066-x.
  30. Bouillaguet S, Virgillito M, Wataha J, et al. The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J Oral Rehabil 1998;25(1):45–51. DOI: 10.1046/j.1365-2842.1998.00205.x.
  31. Chen Y, Tay FR, Lu Z, et al. Dipentaerythritol penta-acrylate phosphate - an alternative phosphate ester monomer for bonding of methacrylates to zirconia. Sci Rep 2016;6(1):39542. DOI: 10.1038/srep39542.
  32. Aydınoğlu A, Yoruç ABH. Effects of silane-modified fillers on properties of dental composite resin. Mater Sci Eng C Mater Biol Appl 2017;79:382–389. DOI: 10.1016/j.msec.2017.04.151.
  33. International Organization for Standardization, ISO 10993-12: Biological Evaluation of Medical Devices. Part 12, Sample Preparation and Reference Materials; ISO: Geneva, Switzerland, 2012.
  34. International Organization for Standardization, ISO 10993-5: Biological Evaluation of Medical Devices. Part 5, Tests for in vitro Cytotoxicity; ISO: Geneva, Switzerland, 2009.
  35. Ruyter IE, Svedsen SA. Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand 1978;40(5):359–376. DOI: 10.3109/00016358209024081.
  36. Ajay R, Suma K, SreeVarun M, et al. Evaluation of in vitro cytotoxicity of heat-cure denture base resin processed with a dual-reactive cycloaliphatic monomer. J Contemp Dent Pract 2019;20(11):1279–1285. DOI: 10.5005/jp-journals-10024-2688.
  37. Wang W, Sun X, Huang L, et al. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes. Int J Nanomedicine 2014;9:841–852. DOI: 10.2147/IJN.S56062.
  38. Lefebvre CA, Knoernschild KL, Schuster GS. Cytotoxicity of eluates from light-polymerized denture base resins. J Prosthet Dent 1994;72(6):644–650. DOI: 10.1016/0022-3913(94)90298-4.
  39. Al-Hiyasat AS, Darmani H, Milhem MM. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig 2005;9(1):21–25. DOI: 10.1007/s00784-004-0293-0.
  40. Caughman WF, Caughman GB, Shiflett RA, et al. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials 1991;12(8):737–740. DOI: 10.1016/0142-9612(91)90022-3.
  41. Wataha JC, Hanks CT, Strawn SE, et al. Cytotoxicity of components of resins and other dental restorative materials. J Oral Rehabil 1994;21(4):453–462. DOI: 10.1111/j.1365-2842.1994.tb01159.x.
  42. Bean TA, Zhuang WC, Tong PY, et al. Effect of esterase on methacrylates and methacrylate polymers in an enzyme simulator for biodurability and biocompatibility testing. J Biomed Mater Res 1994;28(1):59–63. DOI: 10.1002/jbm.820280108.
  43. Engelmann J, Leyhausen G, Leibfritz D, et al. Effect of TEGDMA on the intracellular glutathione concentration of human gingival fibroblasts. J Biomed Mater Res 2002;63(6):746–751. DOI: 10.1002/jbm.10465.
  44. Schweikl H, Hiller KA, Bolay C, et al. Cytotoxic and mutagenic effects of dental composite materials. Biomaterials 2005;26(14):1713–1719. DOI: 10.1016/j.biomaterials.2004.05.025.
  45. Goon AT, Isaksson M, Zimerson E, et al. Contact allergy to (meth)acrylates in the dental series in southern Sweden: simultaneous positive patch test reaction patterns and possible screening allergens. Contact Derm 2006;55(4):219–226. DOI: 10.1111/j.1600-0536.2006.00922.x.
  46. Yalcin M, Ulker M, Ulker E, et al. Evaluation of cytotoxicity of six different flowable composites with the methyl tetrazolium test method. Eur J Gen Dent 2013;2(3):292–295. DOI: 10.4103/2278-9626.116012.
  47. Lee MJ, Kim MJ, Kwon JS, et al. Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials (Basel) 2017;10(3):288. DOI: 10.3390/ma10030288.
  48. Wataha JC, Lockwood PE, Bouillaguet S, et al. In vitro biological response to core and flowable dental restorative materials. Dent Mater 2003;19(1):25–31. DOI: 10.1016/s0109-5641(02)00012-x.
  49. Chen F, Wu T, Cheng X. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines. Gerodontology 2014;31(1):4–10. DOI: 10.1111/j.1741-2358.2012.00681.x.
  50. Lim SM, Yap A, Loo C, et al. Comparison of cytotoxicity test models for evaluating resin-based composites. Hum Exp Toxicol 2017;36(4):339–348. DOI: 10.1177/0960327116650007.
  51. Huang FM, Chang YC. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94(3):361–365. DOI: 10.1067/moe.2002. 126341.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.