World Journal of Dentistry

Register      Login

VOLUME 11 , ISSUE 1 ( January-February, 2020 ) > List of Articles


Update on Clinical Detection Methods for Noncavitated Fissure Caries

Erum Zain, Hooi P Chew

Keywords : Early enamel caries, Electrical conductance and impedance, FOTI, Laser fluorescence, NIR transillumination, Noncavitated fissure caries, Optical coherence tomography, Photothermal radiometry and modulated luminescence, Sensitivity and specificity, Visual detection

Citation Information : Zain E, Chew HP. Update on Clinical Detection Methods for Noncavitated Fissure Caries. World J Dent 2020; 11 (1):81-88.

DOI: 10.5005/jp-journals-10015-1687

License: CC BY-NC 4.0

Published Online: 25-12-2012

Copyright Statement:  Copyright © 2020; The Author(s).


Aim: This review presents an updated overview and evidences on diagnostic performances of clinical detection methods to detect noncavitated fissure caries. Background: The current body of evidence regarding the progression and arrest of dental caries has made its early detection, risk assessment, and minimally invasive management the standard of care today. Hence, its diagnosis should ideally comprise of both detection and severity measurement in the form of lesion depth, demineralization severity, and mineral density distribution. A combination of this information is essential for clinicians to make informed decisions about the management of the disease process. To address the above needs, a plethora of clinical caries detection systems are available and most demonstrate differing diagnostic performance for approximal and fissure caries. In this review, the available systems are categorized based broadly upon their mechanism of actions, under the categories of conventional, nonoptical, and optical methods. This review article sought to present the published evidence of these systems in detecting noncavitated fissure caries. As far as possible, evidence from systematic reviews were presented. In cases where systematic reviews were not available, preference had been given to the present evidence from in vitro and in vivo studies that had employed histology as the validation method. Conclusion: Based on the current evidences and reviews, except for optical coherence tomography, most devices are only able to detect and determine either lesion depth or demineralization severity but not both. Clinical significance: In order to be able to gather necessary information to formulate a treatment plan for noncavitated fissure caries and monitor its efficacy, routine visual assessment will need to be supplemented by another quantification-enabled detection device that had demonstrated reasonably high sensitivity and specificity. Current evidences seem to indicate that photothermal radiometry, near-infrared transillumination, and optical coherence tomography are systems that had demonstrated such capabilities.

  1. Kassebaum NJ, Bernabe E, Dahiya M, et al. Global burden of untreated caries: a systematic review and metaregression. J Dent Res 2015;94(5):650–658. DOI: 10.1177/0022034515573272.
  2. Kidd EA, Fejerskov O. What constitutes dental caries? histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res 2004;83(Spec No C):C35–C38. DOI: 10.1177/154405910408301s07.
  3. Featherstone JD. The continuum of dental caries–evidence for a dynamic disease process. J Dent Res 2004;83(Spec No C):C39–C42. DOI: 10.1177/154405910408301s08.
  4. Marcenes W, Kassebaum NJ, Bernabe E, et al. Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res 2013;92(7):592–597. DOI: 10.1177/0022034513490168.
  5. Zero DT. Dental caries process. Dent Clin North Am 1999;43(4): 635–664.
  6. Mejare I, Stenlund H, Zelezny-Holmlund C. Caries incidence and lesion progression from adolescence to young adulthood: a prospective 15-year cohort study in Sweden. Caries Res 2004;38(2):130–141. DOI: 10.1159/000075937.
  7. Ismail AI, Tellez M, Pitts NB, et al. Caries management pathways preserve dental tissues and promote oral health. Community Dent Oral Epidemiol 2013;41(1):e12–e40. DOI: 10.1111/cdoe.12024.
  8. Amaechi BT. Emerging technologies for diagnosis of dental caries: the road so far. J Appl Phys 2009;105(10):102047. DOI: 10.1063/1. 3116632.
  9. Makhija SK, Gilbert GH, Funkhouser E, et al. Characteristics, detection methods and treatment of questionable occlusal carious lesions: findings from the national dental practice-based research network. Caries Res 2014;48(3):200–207. DOI: 10.1159/000354841.
  10. Pitts N, Stamm J. International consensus workshop on caries clinical trials (ICW-CCT)—final consensus statements: agreeing where the evidence leads. J Dent Res 2004;83(suppl 1):C125–C128.
  11. Brunelle J. Oral health of United States children. The national survey of dental caries in US school children; 1986–87. National and Regional Findings US Department of Health and Human Services; 1989.
  12. Carvalho JC. Caries process on occlusal surfaces: evolving evidence and understanding. Caries Res 2014;48(4):339–346. DOI: 10.1159/000356307.
  13. Baelum V, Fejerskov O, Nyvad B. Dental caries: the disease and its clinical management. Blackwell Munksgaard; 2008.
  14. Jablonski-Momeni A, Ricketts DN, Weber K, et al. Effect of different time intervals between examinations on the reproducibility of ICDAS-II for occlusal caries. Caries Res 2010;44(3):267–271. DOI: 10.1159/000314674.
  15. Golafshani N. Understanding reliability and validity in qualitative research. The qualitative report 2003;8(4):597–606.
  16. Leeflang MM, Deeks JJ, Takwoingi Y, et al. Cochrane diagnostic test accuracy reviews. Syst Rev 2013;2:82. DOI: 10.1186/2046-4053-2-82.
  17. WHO A guide to oral health epidemiological investigations. Geneva 1979.
  18. Gimenez T, Piovesan C, Braga MM, et al. Visual Inspection for caries detection: a systematic review and meta-analysis. J Dent Res 2015;94(7):895–904. DOI: 10.1177/0022034515586763.
  19. Schwendicke F, Tzschoppe M, Paris S. Radiographic caries detection: a systematic review and meta-analysis. J Dent 2015;43(8):924–933. DOI: 10.1016/j.jdent.2015.02.009.
  20. Domejean S, Rongier J, Muller-Bolla M. Detection of occlusal carious lesion using the SoproLife® camera: a systematic review. J Contemp Dent Pract 2016;17(9):774–779. DOI: 10.5005/jp-journals-10024-1928.
  21. Ekstrand KR, Gimenez T, Ferreira FR, et al. The international caries detection and assessment system - ICDAS: a systematic review. Caries Res 2018;52(5):406–419. DOI: 10.1159/000486429.
  22. Gimenez T, Braga MM, Raggio DP, et al. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity. PLoS ONE 2013;8(4):e60421. DOI: 10.1371/journal.pone.0060421.
  23. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent 2002;62(4):201–213. DOI: 10.1111/j.1752-7325.2002. tb03446.x.
  24. Ekstrand KR, Ricketts DN, Kidd EA. Occlusal caries: pathology, diagnosis and logical management. Dent Update 2001;28(8):380–387. DOI: 10.12968/denu.2001.28.8.380.
  25. Braga MM, Mendes FM, Ekstrand KR. Detection activity assessment and diagnosis of dental caries lesions. Dent Clin North Am 2010;54(3):479–493. DOI: 10.1016/j.cden.2010.03.006.
  26. Ismail AI, Sohn W, Tellez M, et al. The international caries detection and assessment system (ICDAS): An integrated system for measuring dental caries. Community Dent Oral Epidemiol 2007;35(3):170–178. DOI: 10.1111/j.1600-0528.2007.00347.x.
  27. Jablonski-Momeni A, Stachniss V, Ricketts DN, et al. Reproducibility and accuracy of the ICDAS-II for detection of occlusal caries in vitro. Caries Res 2008;42(2):79–87. DOI: 10.1159/000113160.
  28. Kuhnisch J, Dietz W, Stosser L, et al. Effects of dental probing on occlusal surfaces–a scanning electron microscopy evaluation. Caries Res 2007;41(1):43–48. DOI: 10.1159/000096104.
  29. Ekstrand K, Qvist V, Thylstrup A. Light microscope study of the effect of probing in occlusal surfaces. Caries Res 1987;21(4):368–374. DOI: 10.1159/000261041.
  30. WHO. Oral health surveys: basic methods; 1997.
  31. Ismail AI. Visual and visuo-tactile detection of dental caries. J Dent Res 2004;83(Spec No C):C56–C66. DOI: 10.1177/154405910408301s12.
  32. Neuhaus KW, Lussi A. Carious lesion diagnosis: methods, problems, thresholds. Monogr Oral Sci 2018;27:24–31.
  33. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Clin North Am 2005;49(4):739–752. DOI: 10.1016/j.cden.2005.05.010, vi.
  34. Thunthy KH, Ireland EJ. A comparison of the visibility of caries on Kodak F-speed (insight) and D-speed (ultra-speed) films. LDA J 2001;60(2):31–32.
  35. Syriopoulos K, Sanderink GC, Velders XL, et al. Radiographic detection of approximal caries: a comparison of dental films and digital imaging systems. Dentomaxillofac Radiol 2000;29(5):312–318. DOI: 10.1038/sj.dmfr.4600553.
  36. Dove SB. Radiographic diagnosis of dental caries. J Dent Educ 2001;65(10):985–990.
  37. Diniz MB, Rodrigues JA, Neuhaus KW, et al. Influence of examiner’s clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries. Clin Oral Investig 2010;14(5):515–523. DOI: 10.1007/s00784-009-0323-z.
  38. Abesi F, Mirshekar A, Moudi E, et al. Diagnostic accuracy of digital and conventional radiography in the detection of non-cavitated approximal dental caries. Iran J Radiol 2012;9(1):17–21. DOI: 10.5812/iranjradiol.6747.
  39. Machiulskiene V, Nyvad B, Baelum V. Comparison of diagnostic yields of clinical and radiographic caries examinations in children of different age. Eur J Paediatr Dent 2004;5(3):157–162.
  40. Ricketts DN, Kidd EA, Smith BG, et al. Clinical and radiographic diagnosis of occlusal caries: a study in vitro. J Oral Rehabil 1995;22(1):15–20. DOI: 10.1111/j.1365-2842.1995.tb00205.x.
  41. Gomez J, Tellez M, Pretty IA, et al. Non-cavitated carious lesions detection methods: a systematic review. Community Dent Oral Epidemiol 2013;41(1):55–66. DOI: 10.1111/cdoe.12021.
  42. Ricketts DNJ, Kidd EAM, Wilson RF. Electronic diagnosis of occlusal caries in vitro: adaptation of the technique for epidemiological purposes. Community Dent Oral Epidemiol 1997;25(3):238–241. DOI: 10.1111/j.1600-0528.1997.tb00933.x.
  43. Longbottom C, Huysmans MC. Electrical measurements for use in caries clinical trials. J Dent Res 2004;83(Spec No C):C76–C79. DOI: 10.1177/154405910408301s15.
  44. Neuhaus KW, Longbottom C, Ellwood R, et al. Novel lesion detection aids. Monogr Oral Sci 2009;21:52–62.
  45. Cortes D, Ellwood R, Ekstrand K. An in vitro comparison of a combined FOTI/visual examination of occlusal caries with other caries diagnostic methods and the effect of stain on their diagnostic performance. Caries Res 2003;37(1):8–16. DOI: 10.1159/000068230.
  46. Huysmans MC, Longbottom C. The challenges of validating diagnostic methods and selecting appropriate gold standards. J Dent Res 2004;83(Spec No C):C48–C52. DOI: 10.1177/154405910408301s10.
  47. Unal M, Kockanat A, Guler S, et al. Diagnostic performance of different methods in detecting incipient non-cavitated occlusal caries lesions in permanent teeth. J Clin Pediatr Dent 2019;43(3):173–179. DOI: 10.17796/1053-4625-43.3.5.
  48. Teo TK-Y, Ashley PF, Louca C. An in vivo and in vitro investigation of the use of ICDAS, DIAGNOdent pen and CarieScan PRO for the detection and assessment of occlusal caries in primary molar teeth. Clin Oral Investig 2013; 1–8.
  49. Mortensen D, Hessing-Olsen I, Ekstrand KR, et al. In-vivo performance of impedance spectroscopy, laser fluorescence, and bitewing radiographs for occlusal caries detection. Quintessence Int 2018;49(4):293–299.
  50. Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J Biomed Opt 2006;11(3):034023. DOI: 10.1117/1.2204603.
  51. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015;15(Suppl 1):S3. DOI: 10.1186/1472-6831-15-S1-S3.
  52. Hogan R, Pretty IA, Ellwood RP. Fibre-optic transillumination: FOTI. In: Ferreira Zandona, Andrea, Longbottom, et al. Detection and Assessment of Dental Caries Springer, Cham; 2019. pp. 139–150.
  53. Cortes DF, Ekstrand KR, Elias-Boneta AR, et al. An in vitro comparison of the ability of fibre-optic transillumination, visual inspection and radiographs to detect occlusal caries and evaluate lesion depth. Caries Res 2000;34(6):443–447. DOI: 10.1159/000016621.
  54. Choo-Smith LP, Dong CC, Cleghorn B, et al. Shedding new light on early caries detection. Tex Dent J 2009;126(2):152–159.
  55. Schneiderman A, Elbaum M, Shultz T, et al. Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study. Caries Res 1997;31(2):103–110. DOI: 10.1159/000262384.
  56. Manton DJ. Diagnosis of the early carious lesion. Aust Dent J 2013;58(Suppl 1):35–39. DOI: 10.1111/adj.12048.
  57. Abdelaziz M, Krejci I, Perneger T, et al. Near infrared transillumination compared with radiography to detect and monitor proximal caries: a clinical retrospective study. J Dent 2018;70:40–45. DOI: 10.1016/j.jdent.2017.12.008.
  58. Fried D, Featherstone JD, Darling CL, et al. Early caries imaging and monitoring with near-infrared light. Dent Clin North Am 2005;49(4):771–793. DOI: 10.1016/j.cden.2005.05.008, vi.
  59. Pretty IA, Ekstrand KR. Detection and monitoring of early caries lesions: A review. Eur Arch Paediatr Dent 2016;17(1):13–25. DOI: 10.1007/s40368-015-0208-6.
  60. Sochtig F, Hickel R, Kuhnisch J. Caries detection and diagnostics with near-infrared light transillumination: clinical experiences. Quintessence Int 2014;45(6):531–538. DOI: 10.3290/j.qi.a31533.
  61. Tassoker M, Sener S, Karabekiroglu S. Occlusal caries detection and diagnosis using visual ICDAS criteria, laser fluorescence measurements and near-infrared light transillumination images. Med Princ Pract 2019. DOI: 10.1159/000501257.
  62. Bussaneli DG, Restrepo M, Boldieri T, et al. Assessment of a new infrared laser transillumination technology (808 nM) for the detection of occlusal caries-an in vitro study. Lasers Med Sci 2015;30(7): 1873–1879. DOI: 10.1007/s10103-014-1704-3.
  63. Salsone S, Taylor A, Gomez J, et al. Histological validation of nearinfrared reflectance multispectral imaging technique for caries detection and quantification. J Biomed Opt 2012;17(7):076009. DOI: 10.1117/1.JBO.17.7.076009.
  64. Lussi A, Hibst R, Paulus R. DIAGNOdent: An optical method for caries detection. J Dent Res 2004;83(Spec No C):C80–C83. DOI: 10.1177/154405910408301s16.
  65. Lussi A, Imwinkelried S, Pitts N, et al. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res 1999;33(4):261–266. DOI: 10.1159/000016527.
  66. Sailer R, Paulus R, Hibst R. Analysis of carious lesions and subgingival calculi by fluorescence spectroscopy. Caries Res 2001;35(4): 267.
  67. Gostanian HV, Shey Z, Kasinathan C, et al. An in vitro evaluation of the effect of sealant characteristics on laser fluorescence for caries detection. Pediatr Dent 2006;28(5):445–450.
  68. Achilleos EE, Rahiotis C, Kakaboura A, et al. Evaluation of a new fluorescence-based device in the detection of incipient occlusal caries lesions. Lasers Med Sci 2013;28(1):193–201. DOI: 10.1007/s10103-012-1111-6.
  69. Attrill DC, Ashley PF. Occlusal caries detection in primary teeth: a comparison of DIAGNOdent with conventional methods. Br Dent J 2001;190(8):440–443. DOI: 10.1038/sj.bdj.4800998.
  70. Abrams SH, Sivagurunathan KS, Silvertown JD, et al. Correlation with caries lesion depth of the canary system, DIAGNOdent and ICDAS II. Open Dent J 2017;11:679–689. DOI: 10.2174/1874210601711010679.
  71. Shi XQ, Welander U, Angmar-Mansson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res 2000;34(2):151–158. DOI: 10.1159/000016583.
  72. Bader JD, Shugars DA. A systematic review of the performance of a laser fluorescence device for detecting caries. J Am Dent Assoc 2004;135(10):1413–1426. DOI: 10.14219/jada.archive.2004.0051.
  73. Pretty IA. Caries detection and diagnosis: novel technologies. J Dent 2006;34(10):727–739. DOI: 10.1016/j.jdent.2006.06.001.
  74. Angmar-Mansson B, ten Bosch JJ. Quantitative light-induced fluorescence (QLF): a method for assessment of incipient caries lesions. Dentomaxillofac Radiol 2001;30(6):298–307. DOI: 10.1038/sj.dmfr.4600644.
  75. Karlsson L. Caries detection methods based on changes in optical properties between healthy and carious tissue. Int J Dent 2010;2010:270729.
  76. van der Veen MH, de Josselin, de Jong E. Application of quantitative light-induced fluorescence for assessing early caries lesions. Monogr Oral Sci 2000;17:144–162.
  77. Tranaeus S, Al-Khateeb S, Bjorkman S, et al. Application of quantitative light-induced fluorescence to monitor incipient lesions in cariesactive children. A comparative study of remineralisation by fluoride varnish and professional cleaning. Eur J Oral Sci 2001;109(2):71–75. DOI: 10.1034/j.1600-0722.2001.00997.x.
  78. Zandona AF, Santiago E, Eckert G, et al. Use of ICDAS combined with quantitative light-induced fluorescence as a caries detection method. Caries Res 2010;44(3):317–322. DOI: 10.1159/000317294.
  79. Garcia JA, Mandelis A, Abrams SH, et al. Photothermal radiometry and modulated luminescence: applications for dental caries detection. Handbook of biophotonics 2013; 1047–1052.
  80. Hellen A, Mandelis A, Finer Y, et al. Quantitative evaluation of the kinetics of human enamel simulated caries using Photothermal radiometry and modulated luminescence. J Biomed Opt 2011;16(7):071406. DOI: 10.1117/1.3564909.
  81. Jeon RJ, Han C, Mandelis A, et al. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence. Caries Res 2004;38(6):497–513. DOI: 10.1159/000080579.
  82. Jeon RJ, Hellen A, Matvienko A, et al. In vitro detection and quantification of enamel and root caries using infrared Photothermal radiometry and modulated luminescence. J Biomed Opt 2008;13(3):034025. DOI: 10.1117/1.2942374.
  83. Silvertown JD, Abrams SH, Sivagurunathan KS, et al. Multi-centre clinical evaluation of photothermal radiometry and luminescence correlated with international benchmarks for caries detection. Open Dent J 2017;11:636–647. DOI: 10.2174/1874210601711010636.
  84. Jallad M, Zero D, Eckert G, et al. In vitro detection of occlusal caries on permanent teeth by a visual, light-induced fluorescence and photothermal radiometry and modulated luminescence methods. Caries Res 2015;49(5):523–530. DOI: 10.1159/000437214.
  85. Ngaotheppitak P, Darling CL, Fried D, et al. PS-OCT of occlusal and interproximal caries lesions viewed from occlusal surfaces. Lasers in Dentistry XII. 2006;6137:L1370.
  86. Ngaotheppitak P, Darling CL, Fried D. Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med 2005;37(1):78–88. DOI: 10.1002/lsm.20169.
  87. Louie T, Lee C, Hsu D, et al. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med 2010;42(10):738–745. DOI: 10.1002/ lsm.21013.
  88. Gomez J, Zakian C, Salsone S, et al. In vitro performance of different methods in detecting occlusal caries lesions. J Dent 2013;41(2): 180–186. DOI: 10.1016/j.jdent.2012.11.003.
  89. Shimada Y, Sadr A, Burrow MF, et al. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent 2010;38(8):655–665. DOI: 10.1016/j.jdent.2010. 05.004.
  90. Zain E, Zakian CM, Chew HP. Influence of the loci of non-cavitated fissure caries on its detection with optical coherence tomography. J Dent 2018;71:31–37. DOI: 10.1016/j.jdent.2018.01.009.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.