Citation Information :
Parthasarathy PR, Tharmar MA, Thangavelu L. Ceramic Biomaterials in Dental Implantology—Time for Change of Status Quo: An Updated Review. World J Dent 2024; 15 (8):733-742.
Aim: This article aims to provide a concise review of the material aspects, unique properties, surface modifications, clinical considerations, and the future prospects of bioceramics in implantology.
Background: Titanium-based implant systems have long been the go-to solution for rehabilitating edentulous spaces due to their excellent mechanical properties, corrosion resistance, and biocompatibility. However, these implant systems are not without their drawbacks, and several inherent flaws have been identified over time, namely hypersensitivity reactions, gray hue, etc., leading to the exploration of alternative materials. Due to these concerns, there has been an increasing demand for more esthetically pleasing and tissue-compatible materials for implant fabrication. Zirconia has emerged as a promising alternative to titanium-based implant systems due to its superior biological, esthetic, mechanical, and optical properties.
Results: Zirconia has emerged as a promising alternative to titanium-based implant systems for oral rehabilitation due to its improved biocompatibility, superior esthetics, mechanical strength, optical properties, and reduced plaque accumulation. However, despite their significant progress in modern healthcare, the full potential of ceramics as biomaterials has yet to be fully realized.
Conclusion: Ongoing research focusing on the chemistry, composition, and structure aims to further enhance the mechanical integration of ceramics and develop appropriate surface characteristics that improve stability and surface coatings to enhance cellular adhesion, proliferation, and differentiation. These advancements are expected to pave the way for ceramics to become the primary material of choice in implantology in the near future.
Clinical significance: Zirconia ceramics have emerged as the preferred material for clinical dental applications, particularly for posterior crowns and fixed bridges, thanks to their impressive mechanical properties, ability to withstand high temperatures, biocompatibility, low thermal conductivity, and esthetic advantages. As dental technology progresses, zirconia ceramics are expected to maintain their prominence in dental restorations, offering patients durable, visually pleasing, and biologically safe solutions for their oral health requirements.
Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000 2017;73(1):7–21. DOI: 10.1111/prd.12185
Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1–132. PMID: 356184.
Koutayas SO, Vagkopoulou T, Pelekanos S, et al. Zirconia in dentistry: part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent 2009;4(4):348–380. PMID: 20111760.
Onodera K, Ooya K, Kawamura H. Titanium lymph node pigmentation in the reconstruction plate system of a mandibular bone defect. Oral Surg Oral Med Oral Pathol 1993;75(4):495–497. DOI: 10.1016/0030-4220(93)90177-6
Jacobs JJ, Skipor AK, Patterson LM, et al. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J Bone Joint Surg Am 1998;80(10):1447–1458. DOI: 10.2106/00004623-199810000-00006
Bankoğlu Güngör M, Aydın C, Yılmaz H, et al. An overview of zirconia dental implants: basic properties and clinical application of three cases. J Oral Implantol 2014;40(4):485–494. DOI: 10.1563/AAID-JOI-D-12-00109
Schulte W, Kleineikenscheidt H, Lindner K, et al. The Tübingen immediate implant in clinical studies. Dtsch Zahnarztl Z 1978;33(5):348–359. PMID: 348452.
Kirsch A, Ackermann KL. The IMZ osteointegrated implant system. Dent Clin North Am 1989;33(4):733–791. PMID: 2680660.
Niznick GA. The Core-Vent implant system. Oral Health 1983;73(11):13–17. PMID: 6759674.
Hashim D, Cionca N, Courvoisier DS, et al. A systematic review of the clinical survival of zirconia implants. Clin Oral Investig 2016;20(7):1403–1417. DOI: 10.1007/s00784-016-1853-9
Webber LP, Chan HL, Wang HL. Will zirconia implants replace titanium implants? Appl Sci 2021;11(15):6776. DOI: 10.3390/app11156776
Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000 2017;73(1):241–258. DOI: 10.1111/prd.12180
Vanhakendover S. Endosseous screw-implants in aluminium ceramic (crystalline bone screw and Cerasand). Actual Odontostomatol 1987;41(160 Spec):627–640.
Al-Radha ASD, Dymock D, Younes C, et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 2012;40(2):146–153. DOI: 10.1016/j.jdent.2011.12.006
Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009;20(Suppl 4):32–47. DOI: 10.1111/j.1600-0501.2009.01785.x
Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004;20(5):449–456. DOI: 10.1016/j.dental.2003.05.002
Kohal RJ, Att W, Bächle M, et al. Ceramic abutments and ceramic oral implants. An update. Periodontol 2000 2008;47:224–243. DOI: 10.1111/j.1600-0757.2007.00243.x
Mussano F, Genova T, Munaron L, et al. Ceramic Biomaterials for Dental Implants: Current Use and Future Perspectives. In: Dental Implantology and Biomaterial. InTech; 2016.
Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20(1):1–25. DOI: 10.1016/s0142-9612(98)00010-6
Christel P, Meunier A, Heller M, et al. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 1989;23(1):45–61. DOI: 10.1002/jbm.820230105
Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35(11):819–826. DOI: 10.1016/j.jdent.2007.07.008
Gp LSGC. Hydrothermal and corrosive degradation of Y-TZP ceramics. Key Engineering Materials 1995;113:207–214. DOI: 10.4028/www.scientific.net/KEM.113.207
Sreenivasagan S, Subramanian AK, Rengalakshmi S. Prevalence and cause of mini-implant failure encountered by orthodontic residents. J Long Term Eff Med Implants 2021;31(4):1–4. DOI: 10.1615/JLongTermEffMedImplants.2021035979
Cattani-Lorente M, Scherrer SS, Ammann P, et al. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7(2):858–865. DOI: 10.1016/j.actbio.2010.09.020
Payer M, Heschl A, Koller M, et al. All-ceramic restoration of zirconia two-piece implants–a randomized controlled clinical trial. Clin Oral Implants Res 2015;26(4):371–376. DOI: 10.1111/clr.12342
Cionca N, Müller N, Mombelli A. Two-piece zirconia implants supporting all-ceramic crowns: a prospective clinical study. Clin Oral Implants Res 2015;26(4):413–418. DOI: 10.1111/clr.12370
Borgonovo AE, Censi R, Vavassori V, et al. Zirconia implants in esthetic areas: 4-year follow-up evaluation study. Int J Dent 2015;2015:415029. DOI: 10.1155/2015/415029
Grassi FR, Capogreco M, Consonni D, et al. Immediate occlusal loading of one-piece zirconia implants: five-year radiographic and clinical evaluation. Int J Oral Maxillofac Implants 2015;30(3):671–680. DOI: 10.11607/jomi.3831
Jank S, Hochgatterer G. Success rate of two-piece zirconia implants: a retrospective statistical analysis. Implant Dent 2016;25(2):193–198. DOI: 10.1097/ID.0000000000000365
Kammermeier A, Rosentritt M, Behr M, et al. In vitro performance of one- and two-piece zirconia implant systems for anterior application. J Dent 2016;53:94–101. DOI: 10.1016/j.jdent.2016.08.004
Pieralli S, Kohal RJ, Jung RE, et al. Clinical outcomes of zirconia dental implants: a systematic review. J Dent Res 2017;96(1):38–46. DOI: 10.1177/0022034516664043
Kohal RJ, Spies BC, Bauer A, et al. One-piece zirconia oral implants for single-tooth replacement: three-year results from a long-term prospective cohort study. J Clin Periodontol 2018;45(1):114–124. DOI: 10.1111/jcpe.12815
Koller M, Steyer E, Theisen K, et al. Two-piece zirconia versus titanium implants after 80 months: clinical outcomes from a prospective randomized pilot trial. Clin Oral Implants Res 2020;31(4):388–396. DOI: 10.1111/clr.13576
Pozzi A, Arcuri L, Fabbri G, et al. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: a retrospective multicenter study. J Prosthet Dent 2023;129(1):96–108. DOI: 10.1016/j.prosdent.2021.04.026
Rutkowski R, Smeets R, Neuhöffer L, et al. Success and patient satisfaction of immediately loaded zirconia implants with fixed restorations one year after loading. BMC Oral Health 2022;22(1):198. DOI: 10.1186/s12903-022-02231-0
Kohal RJ, Burkhardt F, Chevalier J, et al. One-piece zirconia oral implants for single tooth replacement: five-year results from a prospective cohort study. J Funct Biomater 2023;14(2). DOI: 10.3390/jfb14020116
Hermann JS, Buser D, Schenk RK, et al. Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res 2001;12(6):559–571. DOI: 10.1034/j.1600-0501.2001.120603.x
Parmigiani-Izquierdo JM, Cabaña-Muñoz ME, Merino JJ, et al. Zirconia implants and peek restorations for the replacement of upper molars. Int J Implant Dent 2017;3(1):5. DOI: 10.1186/s40729-016-0062-2
Manzano G, Herrero LR, Montero J. Comparison of clinical performance of zirconia implants and titanium implants in animal models: a systematic review. Int J Oral Maxillofac Implants 2014;29(2):311–320. DOI: 10.11607/jomi.2817
Buser D, Nydegger T, Hirt HP, et al. Removal torque values of titanium implants in the maxilla of miniature pigs. Int J Oral Maxillofac Implants 1998;13(5):611–619. PMID: 9796144.
Sun L, Hong G. Surface Modifications for Zirconia Dental Implants: A Review. Front Dent Med [Internet]. 2021 Oct 7;2. Available from: https://www.frontiersin.org/articles/10.3389/fdmed.2021.733242/full
Sivaraman K, Chopra A, Narayan AI, et al. Is zirconia a viable alternative to titanium for oral implant? A critical review. J Prosthodont Res 2018;62(2):121–133. DOI: 10.1016/j.jpor.2017.07.003
Schünemann FH, Galárraga-Vinueza ME, Magini R, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl 2019;98:1294–1305. DOI: 10.1016/j.msec.2019.01.062
Sanon C, Chevalier J, Douillard T, et al. A new testing protocol for zirconia dental implants. Dent Mater 2015;31(1):15–25. DOI: 10.1016/j.dental.2014.09.002
Altmann B, Rabel K, Kohal RJ, et al. Cellular transcriptional response to zirconia-based implant materials. Dent Mater 2017;33(2):241–255. DOI: 10.1016/j.dental.2016.12.005
Scarano A, Di Carlo F, Quaranta M, et al. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29(1):8–12. DOI: 10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
Thoma DS, Benic GI, Muñoz F, et al. Histological analysis of loaded zirconia and titanium dental implants: an experimental study in the dog mandible. J Clin Periodontol 2015;42(10):967–975. DOI: 10.1111/jcpe.12453
Kim HK, Woo KM, Shon WJ, et al. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae. Dent Mater J 2015;34(4):508–515. DOI: 10.4012/dmj.2015-024
Hempel U, Hefti T, Kalbacova M, et al. Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies. Clin Oral Implants Res 2010;21(2):174–181. DOI: 10.1111/j.1600-0501.2009.01797.x
Bächle M, Butz F, Hübner U, et al. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Implants Res 2007;18(1):53–59. DOI: 10.1111/j.1600-0501.2006.01292.x
Al Qahtani WMS, Schille C, Spintzyk S, et al. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed Tech 2017;62(1):75–87. DOI: 10.1515/bmt-2015-0139
Taniguchi Y, Kakura K, Yamamoto K, et al. Accelerated osteogenic differentiation and bone formation on zirconia with surface grooves created with fiber laser irradiation. Clin Implant Dent Relat Res 2016;18(5):883–894. DOI: 10.1111/cid.12366
Yang Y, Zhou J, Liu X, et al. Ultraviolet light-treated zirconia with different roughness affects function of human gingival fibroblasts in vitro: the potential surface modification developed from implant to abutment. J Biomed Mater Res B Appl Biomater 2015;103(1):116–124. DOI: 10.1002/jbm.b.33183
Guo L, Smeets R, Kluwe L, et al. Cytocompatibility of titanium, zirconia and modified PEEK after surface treatment using UV light or non-thermal plasma. Int J Mol Sci 2019;20(22). DOI: 10.3390/ijms20225596
Tuna T, Wein M, Altmann B, et al. Effect of ultraviolet photofunctionalisation on the cell attractiveness of zirconia implant materials. Eur Cell Mater 2015;29:82–94; discussion 95–96. DOI: 10.22203/ecm.v029a07
Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. Biomed Res Int 2017;2017:9246721. DOI: 10.1155/2017/9246721
Liu J, Pathak JL, Hu X, et al. Sustained release of zoledronic acid from mesoporous TiO2-layered implant enhances implant osseointegration in osteoporotic condition. J Biomed Nanotechnol 2018;14(11):1965–1978. DOI: 10.1166/jbn.2018.2635
Laranjeira MS, Carvalho Â, Pelaez-Vargas A, et al. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications. Sci Technol Adv Mater 2014;15(2):025001. DOI: 10.1088/1468-6996/15/2/025001
Hayashi T, Asakura M, Koie S, et al. In vitro study of zirconia surface modification for dental implants by atomic layer deposition. Int J Mol Sci 2023;24(12). DOI: 10.3390/ijms241210101
Sennerby L, Dasmah A, Larsson B, et al. Bone tissue responses to surface-modified zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005;7(Suppl 1):S13–S20. DOI: 10.1111/j.1708-8208.2005.tb00070.x
Gahlert M, Gudehus T, Eichhorn S, et al. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res 2007;18(5):662–668. DOI: 10.1111/j.1600-0501.2007.01401.x
Mihatovic I, Golubovic V, Becker J, et al. Bone tissue response to experimental zirconia implants. Clin Oral Investig 2016;21(2):523–532. DOI: 10.1007/s00784-016-1904-2
Stübinger S, Homann F, Etter C, et al. Effect of Er:YAG, CO(2) and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 2008;40(3):223–228. DOI: 10.1002/lsm.20614
Calvo-Guirado JL, Ramos-Oltra ML, Negri B, et al. Osseointegration of zirconia dental implants modified by femtosecond laser vs. zirconia implants in healed bone: a histomorphometric study in dogs with three-month follow-up. J Osseointegr 2013;5(3):39–44. DOI: 10.23805/jo.2013.05.03.01
Yasuno K, Kakura K, Taniguchi Y, et al. Zirconia implants with laser surface treatment: peri-implant bone response and enhancement of osseointegration. J Hard Tissue Biol 2014;23(1):93–100. DOI: 10.2485/jhtb.23.93
Att W, Takeuchi M, Suzuki T, et al. Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials 2009;30(7):1273–1280. DOI: 10.1016/j.biomaterials.2008.11.024
Brezavšček M, Fawzy A, Bächle M, et al. The effect of UV treatment on the osteoconductive capacity of zirconia-based materials. Materials 2016;9(12). DOI: 10.3390/ma9120958
Henningsen A, Smeets R, Heuberger R, et al. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur J Oral Sci 2018;126(2):126–134. DOI: 10.1111/eos.12400
Yang Y, Zheng M, Liao Y, et al. Different behavior of human gingival fibroblasts on surface modified zirconia: a comparison between ultraviolet (UV) light and plasma. Dent Mater J 2019;38(5):756–763. DOI: 10.4012/dmj.2018-101
Han A, Ding H, Tsoi JKH, et al. Prolonged UV-C irradiation is a double-edged sword on the zirconia surface. ACS Omega 2020;5(10):5126–5133. DOI: 10.1021/acsomega.9b04123
Depprich R, Zipprich H, Ommerborn M, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med 2008;4:30. DOI: 10.1186/1746-160X-4-30
Depprich R, Ommerborn M, Zipprich H, et al. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces. Head Face Med 2008;4:29. DOI: 10.1186/1746-160X-4-29
Saulacic N, Erdösi R, Bosshardt DD, et al. Acid and alkaline etching of sandblasted zirconia implants: a histomorphometric study in miniature pigs. Clin Implant Dent Relat Res 2014;16(3):313–322. DOI: 10.1111/cid.12070
Liñares A, Grize L, Muñoz F, et al. Histological assessment of hard and soft tissues surrounding a novel ceramic implant: a pilot study in the minipig. J Clin Periodontol 2016;43(6):538–546. DOI: 10.1111/jcpe.12543
Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol 2017;88(3):298–307. DOI: 10.1902/jop.2016.160245
Nevins M, Camelo M, Nevins ML, et al. Pilot clinical and histologic evaluations of a two-piece zirconia implant. Int J Periodontics Restorative Dent 2011;31(2):157–163. PMID: 21491015.
Stadlinger B, Hennig M, Eckelt U, et al. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int J Oral Maxillofac Surg 2010;39(6):585–592. DOI: 10.1016/j.ijom.2010.01.015
Wheelis SE, Biguetti CC, Natarajan S, et al. Cellular and molecular dynamics during early oral osseointegration: a comprehensive characterization in the lewis rat. ACS Biomater Sci Eng 2021;7(6):2392–2407. DOI: 10.1021/acsbiomaterials.0c01420
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2017;73(1):22–40. DOI: 10.1111/prd.12179
Monje A, Ravidà A, Wang HL, et al. Relationship between primary/mechanical and secondary/biological implant stability. Int J Oral Maxillofac Implants 2019;34:s7–s23. DOI: 10.11607/jomi.19suppl.g1
Kohal RJ, Weng D, Bächle M, et al. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol 2004;75(9):1262–1268. DOI: 10.1902/jop.2004.75.9.1262
Yamashita D, Machigashira M, Miyamoto M, et al. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 2009;28(4):461–470. DOI: 10.4012/dmj.28.461
Bergemann C, Duske K, Nebe JB, et al. Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts. J Mater Sci Mater Med 2015;26(1):5350. DOI: 10.1007/s10856-014-5350-x
Hoffmann O, Angelov N, Zafiropoulos GG, et al. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits. Int J Oral Maxillofac Implants 2012;27(2):352–358. PMID: 22442775.
Akagawa Y, Ichikawa Y, Nikai H, et al. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent 1993;69(6):599–604. DOI: 10.1016/0022-3913(93)90289-z
Oliva J, Oliva X, Oliva JD. Five-year success rate of 831 consecutively placed zirconia dental implants in humans: a comparison of three different rough surfaces. Int J Oral Maxillofac Implants 2010;25(2):336–344. PMID: 20369093.
Zembic A, Bösch A, Jung RE, et al. Five-year results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clin Oral Implants Res 2013;24(4):384–390. DOI: 10.1111/clr.12044
Depprich R, Naujoks C, Ommerborn M, et al. Current findings regarding zirconia implants. Clin Implant Dent Relat Res 2014;16(1):124–137. DOI: 10.1111/j.1708-8208.2012.00454.x
Renvert S, Polyzois I, Claffey N. How do implant surface characteristics influence peri-implant disease? J Clin Periodontol 2011;38(Suppl 11):214–222. DOI: 10.1111/j.1600-051X.2010.01661.x
Clever K, Schlegel KA, Kniha H, et al. Experimental peri-implant mucositis around titanium and zirconia implants in comparison to a natural tooth: part 2-clinical and microbiological parameters. Int J Oral Maxillofac Surg 2019;48(4):560–565. DOI: 10.1016/j.ijom.2018.10.017
Nickenig HJ, Schlegel KA, Wichmann M, et al. Expression of interleukin 6 and tumor necrosis factor alpha in soft tissue over ceramic and metal implant materials before uncovering: a clinical pilot study. Int J Oral Maxillofac Implants 2012;27(3):671–676. PMID: 22616062.
Rajasekar A, Varghese SS. Microbiological profile in periodontitis and peri-implantitis: a systematic review. J Long Term Eff Med Implants 2022;32(4):83–94. DOI: 10.1615/JLongTermEffMedImplants.2022043121
Noro A, Kaneko M, Murata I, et al. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal). J Biomed Mater Res B Appl Biomater 2013;101(2):355–363. DOI: 10.1002/jbm.b.32846
Cionca N, Hashim D, Cancela J, et al. Pro-inflammatory cytokines at zirconia implants and teeth. A cross-sectional assessment. Clin Oral Investig 2016;20(8):2285–2291. DOI: 10.1007/s00784-016-1729-z
van Brakel R, Meijer GJ, Verhoeven JW, et al. Soft tissue response to zirconia and titanium implant abutments: an in vivo within-subject comparison. J Clin Periodontol 2012;39(10):995–1001. DOI: 10.1111/j.1600-051X.2012.01931.x
Rupp F, Liang L, Geis-Gerstorfer J, et al. Surface characteristics of dental implants: a review. Dent Mater 2018;34(1):40–57. DOI: 10.1016/j.dental.2017.09.007
Lee DJ, Ryu JS, Shimono M, et al. Differential healing patterns of mucosal seal on zirconia and titanium implant. Front Physiol 2019;10:796. DOI: 10.3389/fphys.2019.00796
Duraisamy R, Ganapathy D, Shanmugam R. Biocompatibility and osseointegration of nanohydroxyapatite. Int J Dent Oral Sci 2021;8(9):4136–4139. DOI: 10.19070/2377-8075-21000845