Citation Information :
Sivanathiran R, Al-Marzok MI, Multani AS, Singbal K, Ismail MF. Effect of Bacterial Cellulose Nanocrystals on the Mechanical, Morphological, and Optical Properties of Zirconomer: An In Vitro Study. World J Dent 2024; 15 (8):653-663.
Aim: The study aimed to evaluate the effect of bacterial cellulose nanocrystals (BCNC) addition on the mechanical, morphological, and optical properties of zirconomer.
Materials and methods: Zirconomer with varying amounts of BCNCs (0.2, 0.5, and 1.0%) was then prepared. The mechanical properties of the specimens were tested for compressive strength (CS) and flexural strength (FS) using a universal testing machine. Meanwhile, scanning electron microscopy–energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopy were performed to characterize the sample. The L*a*b* values were measured against a black-and-white background using a spectrophotometer to analyze the color mean difference.
Results: Generally, the incorporation of BCNCs in the zirconomer matrix did not significantly improve the mechanical properties of the composite. However, the addition of a small amount of BCNCs (0.2%) in the glass ionomer cement (GIC) led to significant improvements (p < 0.05) in the compressive strength (+1.4x compared with the control group) but did not significantly change the flexural strength. BCNCs are evenly distributed in the sample SEM image, which may explain the enhancement of certain mechanical properties of the sample. In fact, a rougher and more heterogeneous texture on the sample surface was observed as BCNCs increased. FTIR confirms bonding or close association between the zirconium species and the BCNC matrix. The 0.2% BCNCs sample had relatively better color stability (p > 0.05) compared to the control.
Conclusion: The findings suggest that incorporating a small amount (0.2%) of BCNCs into zirconomer could enhance its mechanical properties, particularly compressive strength, while maintaining acceptable optical properties.
Clinical significance: The research emphasizes the promise of using cellulose nanocrystals (BCNCs) as an eco-friendly enhancer for zirconia-reinforced glass ionomer cement.
Rekow E, Fox C, Petersen P, et al. Innovations in materials for direct restorations: why do we need innovations? Why is it so hard to capitalize on them? J Dent Res 2013;92(11):945–947. DOI: 10.1177/0022034513507058
Mickenautsch S, Yengopal V. Failure rate of direct high-viscosity glass-ionomer versus hybrid resin composite restorations in posterior permanent teeth-a systematic review. Open Dent J 2015;9:438–448. DOI: 10.2174/1874210601509010438
Rey R, Nimmo S, Childs GS, et al. Curriculum time compared to clinical procedures in amalgam and composite posterior restorations in US dental schools: a preliminary study. J Dent Educ 2015;79(3):331–336. DOI: 10.1002/j.0022-0337.2015.79.3.tb05888.x
Richardson G, Wilson R, Allard D, et al. Mercury exposure and risks from dental amalgam in the US population, post-2000. Sci Total Environ 2011;409(20):4257–4268. DOI: 10.1016/j.scitotenv.2011.06.035
FDI World Dental Federation. FDI policy statement on dental amalgam and the Minamata Convention on Mercury: adopted by the FDI General Assembly: 13 September 2014, New Delhi, India. Int Dent J 2014;64(6):295–296. DOI: 10.1111/idj.12151
Kessler R. The Minamata Convention on Mercury: a first step toward protecting future generations. Environ Health Perspect 2013;121(10):A304–A309. DOI: 10.1289/ehp.121-A304
Donovan TE. Longevity of the tooth/restoration complex: a review. J Calif Dent Assoc 2006;34(2):122–128. DOI: 10.1080/19424396.2006.12222180
Petronijević B, Marković D, Šarčev I, et al. Fracture resistance of restored maxillary premolars. Contemp Mater 2012;3(2):219–225. DOI: 10.7251/COMEN1202219P
Yap A, Teoh S. Comparison of flexural properties of composite restoratives using the ISO and mini-flexural tests. J Oral Rehabil 2003;30(2):171–177. DOI: 10.1046/j.1365-2842.2003.01004.x
Mali P, Deshpande S, Singh A. Microleakage of restorative materials: an in vitro study. J Indian Soc Pedod Prev Dent 2006;24(1):15–18. DOI: 10.4103/0970-4388.22828
Daou EE, Al-Gotmeh M. Zirconia ceramic: a versatile restorative material. Dentistry 2014;4(4):219. DOI: 10.4172/2161-1122.1000219
Volpato CÂM, Garbelotto L, Fredel MC, et al. Application of zirconia in dentistry: biological, mechanical and optical considerations. In: Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, vol. 17. London: IntechOpen; 2011. pp. 397–415.
Brzović-Rajić V, Miletić I, Gurgan S, et al. Fluoride release from glass ionomer with nano filled coat and varnish. Acta stomatol Croat 2018;52(4):307–313. DOI: 10.15644/asc52/4/4
Solá-Ruíz M, Rico-Coderch A, Montiel-Company J, et al. Influence of the chemical composition of monolithic zirconia on its optical and mechanical properties. Systematic review and meta-regression. J Prosthodont Res 2022 27;66(2):193–207. DOI: 10.2186/jpr.JPR_D_20_00218
Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005;6(2):612–626. DOI: 10.1021/bm0493685
George J, Ramana K, Bawa A. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 2011;48(1):50–57. DOI: 10.1016/j.ijbiomac.2010.09.013
Jasmania L, Thielemans W. Preparation of nanocellulose and its potential application. Int J Nanomater Nanotechnol Nanomed 2018;4(2):14–21. DOI: 10.17352/2455-3492.000026
Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature's arts. J Mater Sci 2000;35(2):261–270. DOI: 10.1023/A:1004775229149
George J, Sajeevkumar V, Kumar R, et al. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose. J Appl Polym Sci 2008;108(3):1845–1851. DOI: 10.1002/app.27802
Ozawa M, Suzuki S, Loong C.K, et al. Neutron and Raman scattering studies of surface adsorbed molecular vibrations and bulk phonons in ZrO2 nanoparticles. Appl Surf Sci 1997;121:133–137. DOI: 10.1016/S0169-4332(97)00272-9
Aboulkacem K, Abdelkader A, Bediaf B, et al. Thermally activated charge transport in modified tetragonal zirconia thin films prepared by sol–gel method. Jpn J Appl Phys DOI: 10.7567/JJAP.57.045801
Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 2014;52(12):791–806. DOI: 10.1002/polb.23490
Ifuku S, Tsuji M, Morimoto M, et al. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 2009;10(9):2714–2717. DOI: 10.1021/bm9006979
Singhsa P, Narain R, Manuspiya H. Bacterial cellulose nanocrystals (BCNC) preparation and characterization from three bacterial cellulose sources and development of functionalized BCNCs as nucleic acid delivery systems. ACS Appl Nano Mater 2017;1(1):209–221. DOI: 10.1021/acsanm.7b00105
George J, Sabapathi SN, Siddaramaiah. Water soluble polymer-based nanocomposites containing cellulose nanocrystals. In: Thakur V, Thakur M (Eds). Eco-Friendly Polymer Nanocomposites: Processing and Properties. New Delhi: Springer; 2015. pp. 259–293.
Lindqvist V. Preparation and Characterization of a Nanocellulose Reinforced Light-Polymerized Methacrylate-Based Dental Adhesive, Master's Thesis. Kemian tekniikan korkeakoulu; 2019.
Silva RM, Pereira FV, Mota FA, et al. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Mater Sci Eng C Mater Biol Appl 2016;58:389–395. DOI: 10.1016/j.msec.2015.08.041
Jowkar Z, Jowkar M, Shafiei F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J Clin Exp Dent 2019;11(3):e275–e281. DOI: 10.4317/jced.55522
Garoushi S, Vallittu P, Lassila L. Hollow glass fibers in reinforcing glass ionomer cements. Dent Mater 2017;33(2):e86–e93. DOI: 10.1016/j.dental.2016.10.004
Yamazaki T, Schricker SR, Brantley WA, et al. Viscoelastic behavior and fracture toughness of six glass-ionomer cements. J Prosthet Dent 2006;96(4):266–272. DOI: 10.1016/j.prosdent.2006.08.011
Thaveemas P, Chuenchom L, Kaowphong S, et al. Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. Bioresour Technol 2021;333:125184. DOI: 10.1016/j.biortech.2021.125184
Abba M, Nyakuma BB, Ibrahim Z, et al. Physicochemical, morphological, and microstructural characterisation of bacterial nanocellulose from Gluconacetobacter xylinus BCZM. J Nat Fibers 2022;19(11):4368–4379. DOI: 10.1080/15440478.2020.1857896
Dhivya S. In Vitro Comparative study of Sorption, Solubility and Compressive Strength of Three Modified Glass Ionomer Cements, Doctoral dissertation. Tiruchengode: Vivekanandha Dental College for Women; 2020.
Chen Z, Hu Y, Shi G, et al. Advanced flexible materials from nanocellulose. Adv Funct Mater 2023;33:2214245. DOI: 10.1002/adfm.202214245
Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 2009;101:157–170. DOI: 10.1007/s11120-009-9439-x
Kamnev AA, Tugarova AV, Dyatlova YA, et al. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: implications for structural analyses of biomacromolecular samples. Spectrochim Acta A Mol Biomol Spectrosc 2018;193:558–564. DOI: 10.1016/j.saa.2017.12.051
Mihaylov M, Chakarova K, Hadjiivanov K. Formation of carbonyl and nitrosyl complexes on titania- and zirconia-supported nickel: FTIR spectroscopy study. J Catal 2004;228(2):273–281. DOI: 10.1016/j.jcat.2004.08.039
Severin KG, Ledford JS, Torgerson BA, et al. Characterization of titanium and zirconium valerate sol-gel films. Chem Mater 1994;6(7):890–898. DOI: 10.1021/cm00043a006
Sabir M, Muhammad N, Siddiqui U, et al. Effect of nanocrystalline cellulose/silica-based fillers on mechanical properties of experimental dental adhesive. Polym Bull 2023;80(8):9131–9148. DOI: 10.1007/s00289-022-04503-9
Johnson RK, Zink-Sharp A, Glasser WG. Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 2011;18:1599–1609. DOI: 10.1007/s10570-011-9579-y
Dai D, Fan M. Green modification of natural fibres with nanocellulose. RSC Adv 2013;3(14):4659–4665. DOI: 10.1039/C3RA22196B
Kotov N, Larsson PA, Jain K, et al. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohyd Polym 2023;302:120320. DOI: 10.1016/j.carbpol.2022.120320
Turgut S, Kılınç H, Ulusoy KU, et al. The effect of desensitizing toothpastes and coffee staining on the optical properties of natural teeth and microhybrid resin composites: an in-vitro study. Biomed Res Int 2018;2018:9673562. DOI: 10.1155/2018/9673562
Sulaiman TA, Suliman AA, Mohamed EA, et al. Optical properties of bisacryl-, composite-, ceramic-resin restorative materials: an aging simulation study. J Esthet Restor Dent 2021;33(6):913–918. DOI: 10.1111/jerd.12653
Shiozawa M, Takahashi H, Asakawa Y, et al. Color stability of adhesive resin cements after immersion in coffee. Clin Oral Investig 2015;19:309–317. DOI: 10.1007/s00784-014-1272-8
Al-Samadani KH. Color stability of restorative materials in response to Arabic coffee, Turkish coffee and Nescafe. J Contemp Dent Pract 2013;14(4):681–690. DOI: 10.5005/jp-journals-10024-1385