Comparative Evaluation of Gingival Crevicular Fluid Sulfiredoxin Levels in Patients with Periodontitis Prior and after Periodontal Therapy: A Prospective Clinical Trial
Citation Information :
Kumar KM, Varghese S, Jayaraman S, Ganapathy D, Karobari MI. Comparative Evaluation of Gingival Crevicular Fluid Sulfiredoxin Levels in Patients with Periodontitis Prior and after Periodontal Therapy: A Prospective Clinical Trial. World J Dent 2024; 15 (5):394-400.
Aim: To evaluate the gingival crevicular fluid (GCF) sulfiredoxin (SRXN1) levels among patients with chronic periodontitis (CP) and healthy controls and to compare the two groups 1 month following nonsurgical periodontal therapy.
Materials and methods: A total of 30 participants were allocated into two groups based on specific inclusion criteria—(1) group I, consisting of 15 individuals with periodontal health, and (2) group II, comprising 15 patients diagnosed with stage II grade B periodontitis. After a thorough clinical examination, GCF was obtained from both groups, and nonsurgical periodontal therapy was performed. After 1 month, a follow-up involved collecting GCF from both groups for subsequent analysis. SRXN1 levels in the collected samples were assessed using the enzyme-linked immunosorbent assay (ELISA) test.
Results: Gingival crevicular fluid SRXN1 levels in the control group were 8.2946 ± 0.7081pg/mL, whereas, in periodontitis patients, it was 8.5323 ± 0.7016 pg/mL, which had no significant difference (p = 0.36). After nonsurgical periodontal therapy, a slight increase in GCF SRXN1 levels (8.8475 ± 0.8281 pg/mL) was observed compared to baseline among periodontitis patients was statistically insignificant (p = 0.18), whereas, in the control group, there was a reduction in GCF SRXN1 levels from a baseline to 1-month follow-up after nonsurgical periodontal therapy (p = 0.021).
Conclusion: The present study's findings suggest that there is no notable difference in the levels of SRXN1 in GCF between individuals with CP and healthy controls. Moreover, no significant correlation was observed between GCF SRXN1 levels and clinical parameters.
Clinical significance: The findings of this research underscore the potential utility of SRXN1 as a biomarker that facilitates the analysis of prognosis, clinical treatment response, and correlation in periodontal health and disease.
Newman MG, Takei H, Klokkevold PR, et al. Carranza's Clinical Periodontology. Elsevier Health Sci; 2011. p. 872.
Genco RJ, Slots J. Host responses in periodontal diseases. J Dent Res 1984;63(3):441–451. DOI: 10.1177/00220345840630031601
D'Aiuto F, Nibali L, Parkar M, et al. Oxidative stress, systemic inflammation, and severe periodontitis. J Dent Res 2010;89(11):1241–1246. DOI: 10.1177/0022034510375830
Kim GH, Kim JE, Rhie SJ, et al. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015;24(4):325–340. DOI: 10.5607/en.2015.24.4.325
Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis 2015;10:261–276. DOI: 10.2147/COPD.S42414
Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 2007;43:160–232. DOI: 10.1111/j.1600-0757.2006.00178.x
Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82(2):291–295. DOI: 10.1113/expphysiol.1997.sp004024
Nagata M. Inflammatory cells and oxygen radicals. Curr Drug Targets Inflamm Allergy 2005;4(4):503–504. DOI: 10.2174/1568010054526322
Iyer GY, Questel JH. NADPH and NADH oxidation by Guinea pig polymorphonuclear leucocytes. Can J Biochem Physiol 1963;41:427–434. DOI: 10.1139/o63-051
Garrett IR, Boyce BF, Oreffo RO, et al. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 1990;85(3):632–639. DOI: 10.1172/JCI114485
Bax BE, Alam AS, Banerji B, et al. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun 1992;183(3):1153–1158. DOI: 10.1016/s0006-291x(05)80311-0
Lean JM, Jagger CJ, Kirstein B, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 2005;146(2):728–735. DOI: 10.1210/en.2004-1021
Wu W, Yang N, Feng X, et al. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells. Mol Med Rep 2015;11(1):242–248. DOI: 10.3892/mmr.2014.2712
Lemberg R, Foulkes EC. Reaction between catalase and hydrogen peroxide. Nature. 1948;161(4082):131. DOI: 10.1038/161131a0
Tk F, Rao RJ, Prabhu S, et al. Comparative analysis of sulfiredoxin and total oxidative stress levels in diabetic individuals with periodontitis: a case-control study. J Periodontol 2023;94(6):785–792. DOI: 10.1002/JPER.22-0416
Duarte PM, Napimoga MH, Fagnani EC, et al. The expression of antioxidant enzymes in the gingivae of type 2 diabetics with chronic periodontitis. Arch Oral Biol 2012;57(2):161–168. DOI: 10.1016/j.archoralbio.2011.08.007
Tsai CC, Chen HS, Chen SL, et al. Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 2005;40(5):378–384. DOI: 10.1111/j.1600-0765.2005.00818.x
Konopka T, Król K, Kopeć W, et al. Total antioxidant status and 8-hydroxy-2’-deoxyguanosine levels in gingival and peripheral blood of periodontitis patients. Arch Immunol Ther Exp 2007;55(6):417–422. DOI: 10.1007/s00005-007-0047-1
Surdacka A, Ciężka E, Pioruńska-Stolzmann M, et al. Relation of salivary antioxidant status and cytokine levels to clinical parameters of oral health in pregnant women with diabetes. Arch Oral Biol 2011;56(5):428–436. DOI: 10.1016/j.archoralbio.2010.11.005
Kim SC, Kim OS, Kim OJ, et al. Antioxidant profile of whole saliva after scaling and root planing in periodontal disease. J Periodontal Implant Sci 2010;40(4):164–171. DOI: 10.5051/jpis.2010.40.4.164
Diet A, Abbas K, Bouton C, et al. Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J Biol Chem 2007;282(50):36199–36205. DOI: 10.1074/jbc.M706420200
Soriano FX, Léveillé F, Papadia S, et al. Induction of SRXN1 expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-dithiole-3-thione. J Neurochem 2008;107(2):533–543. DOI: 10.1111/j.1471-4159.2008.05648.x
Singh A, Ling G, Suhasini AN, et al. Nrf2-dependent sulfiredoxin expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med 2009;46(3):376–386. DOI: 10.1016/j.freeradbiomed.2008.10.026
Wu L, Jiang H, Chawsheen HA, et al. Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis. Carcinogenesis 2014;35(5):1177–1184. DOI: 10.1093/carcin/bgu035
Bae SH, Woo HA, Sung SH, et al. Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid Redox Signal 2009;11(5):937–948. DOI: 10.1089/ars.2008.2325
Harada N, Ito K, Hosoya T, et al. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation. Free Radic Biol Med 2012;53(12):2256–2262. DOI: 10.1016/j.freeradbiomed.2012.10.001
Wei Q, Jiang H, Matthews CP, et al. Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc Natl Acad Sci U S A 2008;105(50):19738–19743. DOI: 10.1073/pnas.0810676105
Soini Y, Eskelinen M, Juvonen P, et al. Nuclear Nrf2 expression is related to a poor survival in pancreatic adenocarcinoma. Pathol Res Pract 2014;210(1):35–39. DOI: 10.1016/j.prp.2013.10.001
Merikallio H, Pääkkö P, Kinnula VL, et al. Nuclear factor erythroid-derived 2-like 2(Nrf2) and DJ1 are prognostic factors in lung cancer. Hum Pathol 2012;43(4):577–584. DOI: 10.1016/j.humpath.2011.05.024
Ramesh A, Varghese SS, Doraiswamy J, et al. Role of sulfiredoxin in systemic diseases influenced by oxidative stress. Redox Biol 2014;2:1023–1028. DOI: 10.1016/j.redox.2014.09.002
Ramesh A, Varghese S, Jayakumar ND, et al. Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients - a case-control study. J Periodontol 2018;89(10):1241–1248. DOI: 10.1002/JPER.17-0445
Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 2018;89(Suppl 1):S173–S182. DOI: 10.1002/JPER.17-0721
Kil IS, Lee SK, Ryu KW, et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell 2012;46(5):584–594. DOI: 10.1016/j.molcel.2012.05.030
Abbas K, Breton J, Planson AG, et al. Nitric oxide activates an Nrf2/sulfiredoxin antioxidant pathway in macrophages. Free Radic Biol Med 2011;51(1):107–114. DOI: 10.1016/j.freeradbiomed.2011.03.039
Kim H, Jung Y, Shin BS, et al. Redox regulation of lipopolysaccharide-mediated sulfiredoxin induction, which depends on both AP-1 and Nrf2. J Biol Chem 2010;285(45):34419–34428. DOI: 10.1074/jbc.M110.126839
Grant MM, Brock GR, Matthews JB, et al. Crevicular fluid glutathione levels in periodontitis and the effect of non-surgical therapy: GCF glutathione in health and disease. J Clin Periodontol 2010;37(1):17–23. DOI: 10.1111/j.1600-051X.2009.01504.x
Ghallab NA, Hamdy E, Shaker OG. Malondialdehyde, superoxide dismutase and melatonin levels in gingival crevicular fluid of aggressive and chronic periodontitis patients. Aust Dent J 2016;61(1):53–61. DOI: 10.1111/adj.12294
Patel SP, Rao NS, Pradeep AR. Effect of nonsurgical periodontal therapy on crevicular fluid and serum glutathione peroxidase levels. Dis Markers 2012;32(1):1–7. DOI: 10.3233/DMA-2012-0855
Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis 2000;6(3):138–151. DOI: 10.1111/j.1601-0825.2000.tb00325.x