World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 4 ( April, 2024 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of In Vitro Cytocompatibility of New Dental Restorative Composite Resin Copolymers Containing 2π + 2π Photodimerized Cinnamyl Methacrylate Crosslinker

Murugesan Sreevarun, Ranganathan Ajay, Nasir Nilofernisha, Jambai S Sivakumar, Suthagar Abhinayaa, Karthigeyan Suma

Keywords : Composite, Crosslinker, Cytotoxicity, Monomeric residuum, Triethylene glycol dimethacrylate

Citation Information : Sreevarun M, Ajay R, Nilofernisha N, Sivakumar JS, Abhinayaa S, Suma K. Evaluation of In Vitro Cytocompatibility of New Dental Restorative Composite Resin Copolymers Containing 2π + 2π Photodimerized Cinnamyl Methacrylate Crosslinker. World J Dent 2024; 15 (4):320-325.

DOI: 10.5005/jp-journals-10015-2398

License: CC BY-NC 4.0

Published Online: 17-05-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To determine the in vitro cytocompatibility of new dental restorative composite resin (RCR) copolymers containing photodimerized cinnamyl methacrylate (PD-CMA) crosslinker using human pulpal fibroblasts (HPF) by tetrazolium (MTT) assay. Materials and methods: Three research groups were based on the composition of the copolymer. There was a negative control (NC) group only with the cell culture. A total of 27 disk-shaped specimens (n = 9 per group) were prepared. Group C0 (control) consisted of photopolymerized specimens made of base matrix-formers (B), a diluent (D), and without PD-CMA [P(BD)]; experimental groups E10 and E20 consisted of copolymers P(BD-Co-CMA) with 10 wt% PD-CMA substituting D and P(B-Co-CMA) with 20 wt% PD-CMA replacing D, respectively. The specimens were eluted, and an MTT assay was performed. The obtained optical density (OD) values in absorbance unit (AU) were subjected to statistical analysis. Results: The mean OD of C0, E10, and E20 was 0.79, 0.92, and 1.18 AU, respectively. The difference between C0 and E10 was not significant (p = 0.067). The comparisons C0-E20 and E10-E20 were statistically significant (p < 0.05). The order of cytocompatibility was C0 = E10 < E20. Conclusion: The new P(B-Co-CMA) was the most cytocompatible copolymer with HPF in vitro when compared to the P(BD-Co-CMA) and P(BD). Clinical significance: The low-viscosity PD-CMA can eschew the toxic effects of the triethylene glycol dimethacrylate (TEGDMA) by replacing it. Nevertheless, the new copolymer P(B-Co-CMA) with hydrophobic PD-CMA crosslinker would not induce pulpal inflammation and necrosis by preserving the intracellular glutathione and preventing the formation of reactive oxygen species.


PDF Share
  1. Spahl W, Budzikiewicz H, Geurtsen W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 1998;26(2):137–145. DOI: 10.1016/s0300-5712(96)00086-3
  2. Hensten-Pettersen A, Helgeland K. Sensitivity of different human cell line in the biologic evaluation of dental resin-based restorative materials. Scand J Dent Res 1981;89(1):102–107. DOI: 10.1111/j.1600-0722.1981.tb01283.x
  3. Scott A, Egner W, Gawkrodger DJ, et al. The national survey of adverse reactions to dental materials in the UK: a preliminary study by the UK Adverse Reactions Reporting Project. Br Dent J 2004;196(8):471–477; discussion 465. DOI: 10.1038/sj.bdj.4811176
  4. Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 2000;11(3):333–355. DOI: 10.1177/10454411000110030401
  5. Krifka S, Seidenader C, Hiller KA, et al. Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin Oral Investig 2012;16(1):215–224. DOI: 10.1007/s00784-010-0508-5
  6. Chang HH, Guo MK, Kasten FH, et al. Stimulation of glutathione depletion, ROS production and cell cycle arrest of dental pulp cells and gingival epithelial cells by HEMA. Biomaterials 2005;26(7):745–753. DOI: 10.1016/j.biomaterials.2004.03.021
  7. Chang MC, Lin LD, Chan CP, et al. The effect of BisGMA on cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK-dependent and -independent pathways. Biomaterials 2009;30(25):4070–4077. DOI: 10.1016/j.biomaterials.2009.04.034
  8. Seiss M, Langer C, Hickel R, et al. Quantitative determination of TEGDMA, BHT, and DMABEE in eluates from polymerized resin-based dental restorative materials by use of GC/MS. Arch Toxicol 2009;83(12):1109–1115. DOI: 10.1007/s00204-009-0470-7
  9. Kostoryz EL, Eick JD, Glaros AG, et al. Biocompatibility of hydroxylated metabolites of BISGMA and BFDGE. J Dent Res 2003;82(5):367–371. DOI: 10.1177/154405910308200508
  10. Engelmann J, Leyhausen G, Leibfritz D, et al. Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J Dent Res 2001;80(3):869–875. DOI: 10.1177/00220345010800030501
  11. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006;85(10):870–877. DOI: 10.1177/154405910608501001
  12. Kleinsasser NH, Harréus UA, Kastenbauer ER, et al. Mono(2-ethylhexyl)phthalate exhibits genotoxic effects in human lymphocytes and mucosal cells of the upper aerodigestive tract in the comet assay. Toxicol Lett 2004;148(1-2):83–90. DOI: 10.1016/j.toxlet.2003.12.013
  13. Wada H, Tarumi H, Imazato S, et al. In vitro estrogenicity of resin composites. J Dent Res 2004;83(3):222–226. DOI: 10.1177/154405910408300307
  14. Tarumi H, Imazato S, Narimatsu M, et al. Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J Dent Res 2000;79(11):1838–1843. DOI: 10.1177/00220345000790110401
  15. Lewis JB, Rueggeberg FA, Lapp CA, et al. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Investig 1999;3(3):107–113. DOI: 10.1007/s007840050087
  16. Geurtsen W, Leyhausen G. Biological aspects of root canal filling materials–histocompatibility, cytotoxicity, and mutagenicity. Clin Oral Investig 1997;1(1):5–11. DOI: 10.1007/s007840050002
  17. Schweikl H, Schmalz G, Weinmann W. The induction of gene mutations and micronuclei by oxiranes and siloranes in mammalian cells in vitro. J Dent Res 2004;83(1):17–21. DOI: 10.1177/154405910408300104
  18. Kostoryz EL, Tong PY, Strautman AF, et al. Effects of dental resins on TNF-alpha-induced ICAM-1 expression in endothelial cells. J Dent Res 2001;80(9):1789–1792. DOI: 10.1177/00220345010800090301
  19. Schmalz G, Schuster U, Schweikl H. Influence of metals on IL-6 release in vitro. Biomaterials 1998;19(18):1689–1694. DOI: 10.1016/s0142-9612(98)00075-1
  20. Rakich DR, Wataha JC, Lefebvre CA, et al. Effect of dentin bonding agents on the secretion of inflammatory mediators from macrophages. J Endod 1999;25(2):114–117. DOI: 10.1016/S0099-2399(99)80008-9
  21. Sivakumar JS, Ajay R, Nilofernisha N, et al. In vitro cytocompatibility of dental restorative composite resin photopolymerized with a novel multifunctional crosslinking comonomer. World J Dent 2021;12(5):403–408. DOI: 10.5005/jp-journals-10015-1858
  22. Bouillaguet S, Virgillito M, Wataha J, et al. The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J Oral Rehabil 1998;25(1):45–51. DOI: 10.1046/j.1365-2842.1998.00205.x
  23. Minsk LM, Smith JG, van Deusen WP, et al. Photosensitive polymers. I. Cinnamate esters of poly(vinyl alcohol) and cellulose. J Appl Polym Sci 1959;2(6):302–307. DOI: 10.1002/app.1959.070020607
  24. Oya N, Sukarsaatmadja P, Ishida K, et al. Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym J 2012;44:724–729. DOI: 10.1038/pj.2012.18
  25. Tunc D, le Coz C, Alexandre M, et al. Reversible crosslinking of aliphatic polyamides bearing thermos- and photoresponsive cinnamoyl moieties. Macromolecules 2014;47:8247–8254. DOI: 10.1021/ma502083p
  26. Imada M, Takenaka Y, Hatanaka H, et al. Unique acrylic resins with aromatic side chains by homopolymerization of cinnamic monomers. Commun Chem 2019;2:109. DOI: 10.1038/s42004-019-0215-3
  27. Sreevarun M, Ajay R, Suganya G, et al. Formulation, configuration, and physical properties of dental composite resin containing a novel 2π + 2π photodimerized crosslinker - cinnamyl methacrylate: an in vitro research. J Contemp Dent Pract 2023;24(6):364–371. DOI: 10.5005/jp-journals-10024-3480
  28. Aydınoğlu A, Yoruç ABH. Effects of silane-modified fillers on properties of dental composite resin. Mater Sci Eng C Mater Biol Appl 2017;79:382–389. DOI: 10.1016/j.msec.2017.04.151
  29. International Organization for Standardization, ISO 10993-12: Biological Evaluation of Medical Devices. Part 12, Sample Preparation and Reference Materials; ISO. Geneva, Switzerland, 2012.
  30. International Organization for Standardization, ISO 10993-5: Biological Evaluation of Medical Devices. Part 5, Tests for in vitro Cytotoxicity; ISO:. Geneva, Switzerland, 2009.
  31. Arima T, Murata H, Hamada T. The effects of cross-linking agents on the water sorption and solubility characteristics of denture base resin. J Oral Rehabil 1996;23(7):476–480. DOI: 10.1111/j.1365-2842.1996.tb00882.x
  32. Inoue K, Hayashi I. Residual monomer (Bis-GMA) of composite resins. J Oral Rehabil 1982;9(6):493–497. DOI: 10.1111/j.1365-2842.1982.tb01039.x
  33. Tabatabaee MH, Mahdavi H, Zandi S, et al. HPLC analysis of eluted monomers from two composite resins cured with LED and halogen curing lights. J Biomed Mater Res B Appl Biomater 2009;88(1):191–196. DOI: 10.1002/jbm.b.31167
  34. Shajii L, Santerre JP. Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials 1999;20(20):1897–1908. DOI: 10.1016/s0142-9612(99)00087-3
  35. Finer Y, Santerre JP. The influence of resin chemistry on a dental composite's biodegradation. J Biomed Mater Res A 2004;69(2):233–246. DOI: 10.1002/jbm.a.30000
  36. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006;22(3):211–222. DOI: 10.1016/j.dental.2005.05.005
  37. Pelka M, Distler W, Petschelt A. Elution parameters and HPLC-detection of single components from resin composite. Clin Oral Investig 1999;3(4):194–200. DOI: 10.1007/s007840050101
  38. Yourtee DM, Smith RE, Russo KA, et al. The stability of methacrylate biomaterials when enzyme challenged: kinetic and systematic evaluations. J Biomed Mater Res 2001;57(4):522–531. DOI: 10.1002/1097-4636(20011215)57:4 < 522::aid-jbm 1198 > 3.0.co;2-9
  39. Finer Y, Santerre JP. Biodegradation of a dental composite by esterases: dependence on enzyme concentration and specificity. J Biomater Sci Polym Ed 2003;14(8):837–849. DOI: 10.1163/156856203768366558
  40. Finer Y, Santerre JP. Salivary esterase activity and its association with the biodegradation of dental composites. J Dent Res 2004;83(1):22–26. DOI: 10.1177/154405910408300105
  41. Lin BA, Jaffer F, Duff MD, et al. Identifying enzyme activities within human saliva which are relevant to dental resin composite biodegradation. Biomaterials 2005;26(20):4259–4264. DOI: 10.1016/j.biomaterials.2004.11.001
  42. Seiss M, Nitz S, Kleinsasser N, et al. Identification of 2,3-epoxymethacrylic acid as an intermediate in the metabolism of dental materials in human liver microsomes. Dent Mater 2007;23(1):9–16. DOI: 10.1016/j.dental.2005.11.038
  43. Emmler J, Seiss M, Kreppel H, et al. Cytotoxicity of the dental composite component TEGDMA and selected metabolic by-products in human pulmonary cells. Dent Mater 2008;24(12):1670–1675. DOI: 10.1016/j.dental.2008.04.001
  44. Geurtsen- W, Leyhausen G. Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res 2001;80(12):2046–2050. DOI: 10.1177/00220345010800120401
  45. Bakopoulou A, Papadopoulos T, Garefis P. Molecular toxicology of substances released from resin-based dental restorative materials. Int J Mol Sci 2009;10(9):3861–3899. DOI: 10.3390/ijms10093861
  46. Geurtsen W, Lehmann F, Spahl W, et al. Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 1998;41(3):474–480. DOI: 10.1002/(sici)1097-4636(19980905)41:3 < 474::aid-jbm 18 > 3.0.co;2-i
  47. Lee DH, Lim BS, Lee YK, et al. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 2006;22(12):1086–1092. DOI: 10.1016/j.dental.2005.09.002
  48. Janke V, von Neuhoff N, Schlegelberger B, et al. TEGDMA causes apoptosis in primary human gingival fibroblasts. J Dent Res 2003;82(10):814–818. DOI: 10.1177/154405910308201010
  49. Spagnuolo G, Galler K, Schmalz G, et al. Inhibition of phosphatidylinositol 3-kinase amplifies TEGDMA-induced apoptosis in primary human pulp cells. J Dent Res 2004;83(9):703–707. DOI: 10.1177/154405910408300909
  50. Samuelsen JT, Dahl JE, Karlsson S, et al. Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK. Dent Mater 2007;23(1):34–39. DOI: 10.1016/j.dental.2005.11.037
  51. Volk J, Engelmann J, Leyhausen G, et al. Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent Mater 2006;22(6):499–505. DOI: 10.1016/j.dental.2005.06.002
  52. Stanislawski L, Lefeuvre M, Bourd K, et al. TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 2003;66(3):476–482. DOI: 10.1002/jbm.a.10600
  53. Schweikl H, Altmannberger I, Hanser N, et al. The effect of triethylene glycol dimethacrylate on the cell cycle of mammalian cells. Biomaterials 2005;26(19):4111–4118. DOI: 10.1016/j.biomaterials.2004.10.026
  54. Chang MC, Chen LI, Chan CP, et al. The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA. Biomaterials 2010;31(32):8164–8171. DOI: 10.1016/j.biomaterials.2010.07.049
  55. Reichl FX, Durner J, Kunzelmann KH, et al. Biological clearance of TEGDMA in guinea pigs. Arch Toxicol 2001;75(1):22–27. DOI: 10.1007/s002040000159
  56. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 2008;12(1):1–8. DOI: 10.1007/s00784-007-0162-8
  57. Noda M, Wataha JC, Lockwood PE, et al. Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater 2003;19(2):101–105. DOI: 10.1016/s0109-5641(02)00018-0
  58. About I, Camps J, Mitsiadis TA, et al. Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J Biomed Mater Res 2002;63(4):418–423. DOI: 10.1002/jbm.10253
  59. Huang FM, Chang YC. Cytotoxicity of resin-based restorative materials on human pulp cell cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94(3):361–365. DOI: 10.1067/moe.2002.126341
  60. Lee MJ, Kim MJ, Kwon JS, et al. Cytotoxicity of light-cured dental materials according to different sample preparation methods. Materials (Basel) 2017;10(3). DOI: 10.3390/ma10030288
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.