World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 2 ( February, 2024 ) > List of Articles

ORIGINAL RESEARCH

Development of Candida Biofilms on Bacterial Preformed Biofilms on Titanium Surfaces

Gustavo Obando-Pereda, Viviana Tejada-Alferez, Emilio Ponce-Fuentes, Alberto Figueroa-Banda, Luis A Ponce-Soto

Keywords : Candida biofilms, Staphylococcus aureus, Streptococci, Titanium alloys

Citation Information : Obando-Pereda G, Tejada-Alferez V, Ponce-Fuentes E, Figueroa-Banda A, Ponce-Soto LA. Development of Candida Biofilms on Bacterial Preformed Biofilms on Titanium Surfaces. World J Dent 2024; 15 (2):107-113.

DOI: 10.5005/jp-journals-10015-2374

License: CC BY-NC 4.0

Published Online: 02-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: Candida species are frequent inhabitants of the oral cavity and generally are associated with implanted biomaterials in a biofilm state. The adhesion to these materials has been studied, and it has been proposed that bacterial biofilms can enhance Candida's ability to adhere to these materials. The aim of this study was to evaluate the effects of some oral Streptococcus species and Staphylococcus aureus preformed biofilms on the development of Candida species on titanium disks. Materials and methods: A biofilm model was performed to develop Streptococci and Staphylococcus aureus biofilm on 60 medical titanium surfaces firstly for 48 hours at incubation at 37°C in a 10% partial pressure of carbon dioxide (PCO2) atmosphere. After that, Candida species was placed on bacterium-preformed biofilm. At the end of the incubation, samples were sonicated, and bacteria were treated for colony forming unit (CFU) count and scanning electron microscopy (SEM) observation. Data was processed using one-way analysis of variance (ANOVA) with Tukey post hoc test, and p-value of <0.05 was considered statistically significant. Results: The data showed that Candida albicans (C. albicans) and C. tropicalis were able to grow on Streptococcus mutans (S. mutans) and S. aureus preformed biofilm. C. glabrata did not show any growth in comparison with control (p < 0.05). Conclusion: The results of this study imply that bacterial-preformed biofilm allows C. albicans and C. tropicalis to develop biofilm, especially on S. mutans and S. aureus. Clinical significance: The clinical significance of the present study reveals the importance of the maintenance of dental prosthesis hygiene because the bacterial preformed biofilm can lead yeast growing.


PDF Share
  1. Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol 1995;49:711–745. DOI: 10.1146/annurev.mi.49.100195.003431
  2. Jakubovics NS, Goodman SD, Mashburn-Warren L, et al. The dental plaque biofilm matrix. Periodontol 2000 2021;86(1):32–56. DOI: 10.1111/prd.12361
  3. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2017;44(Suppl 18):S12–S22. DOI: 10.1111/jcpe.12679
  4. Diaz PI, Dupuy AK, Abusleme L, et al. Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol Oral Microbiol 2012;27(3):182–201. DOI: 10.1111/j.2041-1014.2012.00642.x
  5. Kumar PS, Mason MR, Brooker MR, et al. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol 2012;39(5):425–433. DOI: 10.1111/j.1600-051X.2012.01856.x
  6. Schincaglia GP, Hong BY, Rosania A, et al. Clinical, immune, and microbiome traits of gingivitis and peri-implant mucositis. J Dent Res 2017;96(1):47–55. DOI: 10.1177/0022034516668847
  7. Schwarz F, Becker K, Rahn S, et al. Real-time PCR analysis of fungal organisms and bacterial species at peri-implantitis sites. Int J Implant Dent 2015;1(1):9. DOI: 10.1186/s40729-015-0010-6
  8. Yu J, Wang F, Shen Y, et al. Inhibitory effect of ficin on Candida albicans biofilm formation and pre-formed biofilms. BMC Oral Health 2022;22(1):350. DOI: 10.1186/s12903-022-02384-y
  9. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017;104(3):365–376. DOI: 10.1111/mmi.13634
  10. Garbacz K, Jarzembowski T, Kwapisz E, et al. Do the oral Staphylococcus aureus strains from denture wearers have a greater pathogenicity potential? J Oral Microbiol 2019;11(1):1536193. DOI: 10.1080/20002297.2018.1536193
  11. Short B, Delaney C, McKloud E, et al. Investigating the transcriptome of candida albicans in a dual-species staphylococcus aureus biofilm model. Front Cell Infect Microbiol 2021;11:791523. DOI: 10.3389/fcimb.2021.791523
  12. Ramage G, Martinez JP, Lopez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 2006;6(7):979–986. DOI: 10.1111/j.1567-1364.2006.00117.x
  13. Aikawa NE, Rosa DT, Del Negro GM, et al. Systemic and localized infection by Candida species in patients with rheumatic diseases receiving anti-TNF therapy. Rev Bras Reumatol Engl Ed 2016;56(6):478–482. DOI: 10.1016/j.rbre.2015.08.004
  14. Chandra J, Mukherjee PK. Candida biofilms: development, architecture, and resistance. Microbiol Spectr 2015;3(4):10.1128/microbiolspec.MB-0020-2015. DOI: 10.1128/microbiolspec.MB-0020-2015
  15. Valentini F, Luz MS, Boscato N, et al. Surface roughness changes in denture liners in denture stomatitis patients. Int J Prosthodont 2017;30(6):561–564. DOI: 10.11607/ijp.5108
  16. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 2016;18(5):310–321. DOI: 10.1016/j.micinf.2016.01.002
  17. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013;4(2):119–128. DOI: 10.4161/viru.22913
  18. Moyes DL, Richardson JP, Naglik JR. Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 2015;6(4):338–346. DOI: 10.1080/21505594.2015.1012981
  19. Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol 2010;12(3):273–282. DOI: 10.1111/j.1462-5822.2009.01412.x
  20. Yang W, Yan L, Wu C, et al. Fungal invasion of epithelial cells. Microbiol Res 2014;169(11):803–810. DOI: 10.1016/j.micres.2014.02.013
  21. Cotter G, Kavanagh K. Adherence mechanisms of Candida albicans. Br J Biomed Sci 2000;57(3):241–249.
  22. Diaz PI, Xie Z, Sobue T, et al. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 2012;80(2):620–632. DOI: 10.1128/IAI.05896-11
  23. Fragkou S, Balasouli C, Tsuzukibashi O, et al. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children. Eur Arch Paediatr Dent 2016;17(5):367–375. DOI: 10.1007/s40368-016-0239-7
  24. Scheres N, Krom BP. Staphylococcus-Candida interaction models: antibiotic resistance testing and host interactions. Methods Mol Biol 2016;1356:153–161. DOI: 10.1007/978-1-4939-3052-4_11
  25. O'Sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiol 2000;146(Pt 1):41–48. DOI: 10.1099/00221287-146-1-41
  26. Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 2002;51(4):344–349. DOI: 10.1099/0022-1317-51-4-344
  27. El-Azizi MA, Starks SE, Khardori N. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol 2004;96(5):1067–1073. DOI: 10.1111/j.1365-2672.2004.02213.x
  28. Roberts SK, Wei GX, Wu CD. Evaluating biofilm growth of two oral pathogens. Lett Appl Microbiol 2002;35(6):552–556. DOI: 10.1046/j.1472-765x.2002.01228.x
  29. Chandra J, Mukherjee PK, Leidich SD, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 2001;80(3):903–908. DOI: 10.1177/00220345010800031101
  30. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994;62(3):915–921. DOI: 10.1128/iai.62.3.915-921.1994
  31. Mandelblat M, Frenkel M, Abbey D, et al. Phenotypic and genotypic characteristics of Candida albicans isolates from bloodstream and mucosal infections. Mycoses 2017;60(8):534–545. DOI: 10.1111/myc.12623
  32. Nikawa H, Egusa H, Makihira S, et al. Alteration of the coadherence of Candida albicans with oral bacteria by dietary sugars. Oral Microbiol Immunol 2001;16(5):279–283. DOI: 10.1034/j.1399-302x.2001.016005279.x
  33. Allison DL, Willems HM, Jayatilake JA, et al. Candida-bacteria interactions: their impact on human disease. Microbiol Spectr 2016;4(3). DOI: 10.1128/microbiolspec.VMBF-0030-2016
  34. Nair RG, Anil S, Samaranayake LP. The effect of oral bacteria on Candida albicans germ-tube formation. APMIS 2001;109(2):147–154. DOI: 10.1034/j.1600-0463.2001.d01-116.x
  35. Belduz N, Kamburoglu A, Yilmaz Y, et al. Evaluation of candida albicans biofilm formation on various dental restorative material surfaces. Niger J Clin Pract 2017;20(3):355–360. DOI: 10.4103/1119-3077.198388
  36. Gokmenoglu C, Kara NB, Belduz M, et al. Evaluation of Candida Albicans biofilm formation on various parts of implant material surfaces. Niger J Clin Pract 2018;21(1):33–37. DOI: 10.4103/1119-3077.224793
  37. Jenkinson HF, Lala HC, Shepherd MG. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun 1990;58(5):1429–1436. DOI: 10.1128/iai.58.5.1429-1436.1990
  38. Holmes AR, Gopal PK, Jenkinson HF. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect Immun 1995;63(5):1827–1834. DOI: 10.1128/iai.63.5.1827-1834.1995
  39. Baena-Monroy T, Moreno-Maldonado V, Franco-Martinez F, et al. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med Oral Patol Oral Cir Bucal 2005;10(Suppl 1):E27–E39.
  40. Johnson CJ, Cabezas-Olcoz J, Kernien JF, et al. The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps. PLoS Pathog 2016;12(9):e1005884. DOI: 10.1371/journal.ppat.1005884
  41. Eidt G, Andrade CG, Negrini TC, et al. Role of Candida albicans on enamel demineralization and on acidogenic potential of Streptococcus mutans in vitro biofilms. J Appl Oral Sci 2019;27:e20180593. DOI: 10.1590/1678-7757-2018-0593
  42. Chevalier M, Ranque S, Precheur I. Oral fungal-bacterial biofilm models in vitro: a review. Med Mycol 2018;56(6):653–667. DOI: 10.1093/mmy/myx111
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.