World Journal of Dentistry

Register      Login

VOLUME 15 , ISSUE 1 ( January, 2024 ) > List of Articles

REVIEW ARTICLE

Systematic Review on Hydroxyapatite and Chitosan Combination-coated Titanium Implants on Osseointegration

Revathi Duraisamy, Dhanraj Ganapathy, Lakshmi Thangavelu

Keywords : Chitosan, Coated, Dental implants, Hydroxyapatite, Osseointegration, Titanium

Citation Information : Duraisamy R, Ganapathy D, Thangavelu L. Systematic Review on Hydroxyapatite and Chitosan Combination-coated Titanium Implants on Osseointegration. World J Dent 2024; 15 (1):79-86.

DOI: 10.5005/jp-journals-10015-2358

License: CC BY-NC 4.0

Published Online: 20-02-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim: To systematically examine existing scientific literature to assess the effectiveness of hydroxyapatite (HA) and chitosan (CS) combination coatings on titanium (Ti) implants. Background: Osseointegration is the key to success of dental implants. Ti alloy is widely used for its biocompatibility, ductility, and strength. HA and CS-coated Ti implants showed improved osseointegration. HA and CS have their own merits and demerits. The high elastic moduli of Ti alloys used in dental implants induce bone resorption, causing alveolar bone remodeling due to insufficient stress stimulation on bone tissue, leading to implant failure. Also, Ti alloys are highly susceptible to bacterial growth due to their reduced osteoconductive and osteoinductive property. To combat the abovementioned disadvantages, various surface modifications, biofunctionalization, and texture fabrication in combination with antibacterial nanoparticles have been performed on Ti alloys. Materials and methods: The search strategy was carried out in PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar with no language and date of publication restriction to identify experiments that compared the osseointegration of HA-coated and CS-coated Ti dental implants. All in vitro and in vivo studies comparing the same were included. RoBDEMAT and SYRCLE's risk assessment tools were used to evaluate the risk of bias (RoB) for in vitro and in vivo studies. Review results: A total of 73 articles were obtained. On removing the duplicates and screening for title and abstract, three full-text articles were then assessed for eligibility criteria. Two were excluded for not satisfying the inclusion criteria. One article which remained also does not adhere to strict eligibility criteria. However, it compared the HA/CS complex-coated Ti dental implants with different porosities. RoB was found to be moderate for the in vitro and in vivo experiments of the included article. In vitro and in vivo assessments that compared the effect of HA/CS complex-coated porous Ti dental implants showed improved osseointegration than nonporous, noncoated solid Ti dental implants. Conclusion: Enhanced osseointegration was observed in the HA and CS complex-coated porous Ti dental implants, potentially improving implant success in compromised bone. Further extensive human trials are necessary to fully validate these findings across diverse clinical scenarios. Clinical significance: Excellent osseointegration of HA and CS complex-coated porous Ti dental implants can facilitate successful implant placement and improved performance in compromised and porous bone.


HTML PDF Share
  1. Wu SL, Liu XM, Yeung KW, et al. Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Tech 2013;233:13–26. DOI: 10.1016/j.surfcoat.2012.10.023
  2. Apostu D, Lucaciu O, Lucaciu GD, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev 2017;49(1):92–104. DOI: 10.1080/03602532.2016.1277737
  3. Terheyden H, Lang NP, Bierbaum S, et al. Osseointegration-communication of cells. Clin Oral Implants Res 2012;23(10):1127–1135. DOI: 10.1111/j.1600-0501.2011.02327.x
  4. Qin L, Dong H, Mu Z, et al. Preparation and bioactive properties of chitosan and casein phosphopeptides composite coatings for orthopedic implants. Carbohydr Polym 2015;133:236–244. DOI: 10.1016/j.carbpol.2015.06.099
  5. Cochis A, Ferraris S, Sorrentino R. Silver-doped keratin nanofibers preserve a titanium surface from biofilm contamination and favor soft-tissue healing. J Mater Chem B 2017;5(42):8366–8377. DOI: 10.1039/c7tb01965c
  6. Memarzadeh K, Sharili AS, Huang J, et al. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A 2015;103(3):981–989. DOI: 10.1002/jbm.a.35241
  7. Zhai M, Xu Y, Zhou B, et al. Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application. J Photochem Photobiol B 2018;180:253–258. DOI: 10.1016/j.jphotobiol.2018.02.018
  8. Kim TI, Jang JH, Kim HW, et al. Biomimetic approach to dental implants. Curr Pharm Des 2008;14(22):2201–2211. DOI: 10.2174/138161208785740171
  9. Dias GJ, Mahoney P, Hung NA Sharma LA, et al. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes. J Biomed Mater Res Part B Appl Biomater 2017;105(7):2034–2044. DOI: 10.1002/jbm.b.33735
  10. Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering-an overview. Mar Drugs 2010;8(8):2252–2266. DOI: 10.3390/md8082252
  11. Saini M, Singh Y, Arora P, et al. Implant biomaterials: a comprehensive review. World J Clin Cases 2015;3(1):52–57. DOI: 10.12998/wjcc.v3.i1.52
  12. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013;49(4):780–792. DOI: 10.1016/j.eurpolymj.2012.12.009
  13. Vasconcelos A, Cavaco Paulo A. The use of keratin in biomedical applications. Curr Drug Targets 2013;14(5):612–619. DOI: 10.2174/1389450111314050010
  14. Schroeder A, van der Zypen E, Stich H et al. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg 1981;9(1):15–25. DOI: 10.1016/s0301-0503(81)80007-0
  15. Cook SD, Kay JF, Thomas KA et al. Interface mechanics and histology of titanium and hydroxyapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987;2(1):15–22.
  16. Shen JW, Wu T, Wang Q, et al. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials 2008;29(5):513−532. DOI: 10.1016/j.biomaterials.2007.10.016
  17. Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins and osteoblast precursor cells than titanium or steel. J Biomed Mater Res 2001;57(2):258−267. DOI: 10.1002/1097-4636(200111)57:2<258::aid-jbm1166>3.0.co;2-r
  18. Sun L, Berndt CC, Gross KA, et al. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res B Appl Biomater 2001;58(5):570–592. DOI: 10.1002/jbm.1056
  19. Łukaszewska-Kuska M, Krawczyk P, Martyla A, et al. Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: physical and chemical considerations. Adv Clin Exp Med 2018;27(8):1055–1059. DOI: 10.17219/acem/69084
  20. Dima JB, Sequeiros C, Zaritzky NE. Chitosan from marine crustaceans: production, characterization and applications. Biological Activities and Application of Marine Polysaccharides. 2017.
  21. Cicciu M, Fiorillo L, Cervino G. Chitosan use in dentistry: a systematic review of recent clinical studies. Mar Drugs 2019;17(7):417. DOI: 10.3390/md17070417
  22. Chandy T, Sharma CP. Chitosan–as a biomaterial. Biomater Artif Cells Artif. Organs 1990;18(1):1–24. DOI: 10.3109/10731199009117286
  23. Kankariya Y, Chatterjee B. Biomedical application of chitosan and chitosan derivatives: a comprehensive review. Curr Pharm Des 2023;29(17):1311–1325. DOI: 10.2174/1381612829666220303123223
  24. Rao MS, Muñoz J, Stevens WF. Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 2000;54(6):808–813. DOI: 10.1007/s002530000449
  25. Yuan Y, Chesnutt BM, Haggard WO, et al. Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials (Basel) 2011;4(8):1399–1416. DOI: 10.3390/ma4081399
  26. Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 2001; 52(2):105–115. DOI: 10.1016/s0169-409x(01)00189-2
  27. Muzzarelli RA, Biagini G, Bellardini M, et al. Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery. Biomaterials 1993;14(1):39–43. DOI: 10.1016/0142-9612(93)90073-b
  28. Khor E. Fufilling a Biomaterials Promise. Amsterdam: Elsevier; 2001.
  29. Alnufaiy BM, Lambarte RNA, Al-Hamdan KS. The osteogenetic potential of chitosan coated implant: an in vitro study. J Stem Cells Regen Med 2020;16(2):44–49. DOI: 10.46582/jsrm.1602008
  30. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. DOI: 10.1136/bmj.n71
  31. Delgado AH, Sauro S, Lima AF, et al. RoBDEMAT: a risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews. J Dent 2022;127:104350. DOI: 10.1016/j.jdent.2022.104350
  32. Zhang T, Zhang X, Mao M, et al. Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies. J Periodontal Implant Sci 2020;50(6):392–405. DOI: 10.5051/jpis.1905680284
  33. Ansari Z, Kalantar M, Soriente A, et al. In-situ synthesis and characterization of chitosan/hydroxyapatite nanocomposite coatings to improve the bioactive properties of Ti6Al4V substrates. Materials (Basel) 2020;13(17):3772. DOI: 10.3390/ma13173772
  34. Kim SH, Park JK, Hong KS, et al. Immobilization of BMP-2 on a nano-hydroxyapatite-coated titanium surface using a chitosan calcium chelating agent. Int J Artif Organs 2013;36(7):506–517. DOI: 10.5301/ijao.5000215
  35. Suo L, Jiang N, Wang Y, et al. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J Biomed Mater Res B Appl Biomater 2019;107(3):635–645. DOI: 10.1002/jbm.b.34156
  36. Yang M, Jiang P, Ge Y, et al. Dopamine self-polymerized along with hydroxyapatite onto the preactivated titanium percutaneous implants surface to promote human gingival fibroblast behavior and antimicrobial activity for biological sealing. J Biomater Appl 2018;32(8):1071–1082. DOI: 10.1177/0885328217749963
  37. Blanchemain N, Siepmann F, Siepmann J. Implants for drug substance delivery. Med Sci (Paris) 2017;33(1):32–38. DOI: 10.1051/medsci/20173301006
  38. Wang Z, Mei L, Liu X, et al. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021;204:111802. DOI: 10.1016/j.colsurfb.2021.111802
  39. Eftekhar Ashtiani R, Alam M, Tavakolizadeh S, et al. The role of biomaterials and biocompatible materials in implant-supported dental prosthesis. Evid Based Complement Alternat Med 2021;2021:3349433. DOI: 10.1155/2021/3349433
  40. Elia R, Michelson CD, Perera AL, et al. Silk electrogel coatings for titanium dental implants. J Biomater Appl 2015;29(9):1247–1255. DOI: 10.1177/0885328214561536
  41. Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43. DOI: 10.1186/1471-2288-14-43
  42. Kennedy CE, Fonner VA, Armstrong KA, et al. The evidence project risk of bias tool: assessing study rigor for both randomized and non-randomized intervention studies. Syst Rev 2019;8(1):3. DOI: 10.1186/s13643-018-0925-0
  43. Diwu W, Dong X, Nasif O, et al. In-vivo investigations of hydroxyapatite/co-polymeric composites coated titanium plate for bone regeneration. Front Cell Dev Biol. 2021;8:631107. DOI: 10.3389/fcell.2020.631107
  44. Wang X, Wan C, Feng X, et al. In vivo and in vitro analyses of titanium-hydroxyapatite functionally graded material for dental implants. Biomed Res Int 2021;2021:8859945. DOI: 10.1155/2021/8859945
  45. Chen L, Komasa S, Hashimoto Y, et al. In vitro and in vivo osteogenic activity of titanium implants coated by pulsed laser deposition with a thin film of fluoridated hydroxyapatite. Int J Mol Sci 2018;19(4):1127. DOI: 10.3390/ijms19041127
  46. Ong JL, Chan DCN. A review of hydroxyapatite and its use as a coating in dental implants. Crit Rev Biomed Eng 2017;45(1-6):411–451. DOI: 10.1615/CritRevBiomedEng.v45.i1-6.160
  47. López-Valverde N, Aragoneses J, López-Valverde A, et al. Role of chitosan in titanium coatings. trends and new generations of coatings. Front Bioeng Biotechnol 2022;10:907589. DOI: 10.3389/fbioe.2022.907589
  48. Ranjit E, Sharma A, Hamlet S, et al. Influence of chitosan or keratin on titanium implant surface: a systematic review. Int J Regen Med 2020;3(1):2–12. DOI: 10.31487/j.RGM.2020.01.04
  49. López-Valverde N, López-Valverde A, Cortés MP, et al. Bone quantification around chitosan-coated titanium dental implants: a preliminary study by micro-ct analysis in jaw of a canine model. Front Bioeng Biotechnol 2022;10:858786. DOI: 10.3389/fbioe.2022.858786
  50. Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater Charact 2007;58(4):339–348. DOI: 10.1016/j.matchar.2006.05.011
  51. Cheng A, Humayun A, Cohen DJ, et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014;6(4):045007. DOI: 10.1088/1758-5082/6/4/045007
  52. Cheng A, Humayun A, Boyan BD, et al. Enhanced osteoblast response to porosity and resolution of additively manufactured Ti-6Al-4V constructs with trabeculae-inspired porosity. 3D Print Addit Manuf 2016;3(1):10–21. DOI: 10.1089/3dp.2015.0038
  53. Pattanayak DK, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater 2011;7(3):1398–1406. DOI: 10.1016/j.actbio.2010.09.034
  54. Ding R, Wu Z, Qiu G, et al. Selective Laser Sintering-produced porous titanium alloy scaffold for bone tissue engineering. Zhonghua Yi Xue Za Zhi 2014;94(19):1499–1502.
  55. Munoz S, Pavon J, Rodriguez-Ortiz JA, et al. On the influence of space holder in the development of porous titanium implants: mechanical, computational and biological evaluation. Mater Charact 2015;108:68–78. DOI: 10.1016/j.matchar.2015.08.019
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.