World Journal of Dentistry

Register      Login

VOLUME 14 , ISSUE 5 ( May, 2023 ) > List of Articles


Evolution and Progress of Biologically Compatible Materials in Dental Field: A Descriptive Review

Chithambaram Karunanithi, Senthilnathan Natarajan

Keywords : Biocompatibility, Biomaterials, Cytotoxicity, Dental materials, Image processing

Citation Information : Karunanithi C, Natarajan S. Evolution and Progress of Biologically Compatible Materials in Dental Field: A Descriptive Review. World J Dent 2023; 14 (5):471-477.

DOI: 10.5005/jp-journals-10015-2239

License: CC BY-NC 4.0

Published Online: 02-08-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: The objective of this article is to review the evolution and advancement of biomaterials in the dental sector, especially the development of biomaterials for dental implants, while also focusing on their biocompatibility properties and assessment procedures. Background: Biomaterials are rapidly developing new classes of materials, particularly in the fields of medicine and materials engineering. Dentistry exerts special demands on the materials used to repair damaged hard tissues, like teeth and bones, as well as damaged soft tissues. In terms of their physical, chemical, and biological activities, a variety of materials are being used with potential benefits and drawbacks. Review results: The dental care sector is benefiting from the growth of biomaterials with specialized properties. Titanium (Ti) and its alloys, zirconia (Zr), and a few biopolymers are the most commonly utilized biomaterials. These materials are suitable for usage due to their anticorrosion, mechanical strength, biocompatibility, and nontoxicity properties. In allergic people, these materials can cause inflammation, bone loss, and pain, despite their widespread use. Conclusion: These biomaterials have received considerable attention given their numerous potential uses in the medical field and their advantages in the long-term safety of implants. It is very important to choose a material that meets the requirements for biocompatibility and has a low risk and a high benefit-to-risk ratio. Clinical significance: As the world recognizes the superior functional features of one material over another, the dentistry industry is transitioning to the idea of material advantage. In light of this, there has to be additional investigation into the materials’ individual performance in reducing allergic reactions in people with consistent success.

  1. Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. Elsevier 2004.
  2. Rezaie HR, Bakhtiari L, Öchsner A. Biomaterials and their applications. Berlin, Germany: Springer International Publishing; 2015 Apr 30.
  3. Stoddart A, Cleave V. The evolution of biomaterials. Nature Materials 2009;8(6):444–445. DOI: 10.1038/nmat2447
  4. Chapin R. Dental benefits improve access to oral care. Dent Clin North Arm 2009;53(3):505–509. DOI: 10.1016/j.cden.2009.03.004
  5. Press Room | American Association of Orthodontists. American Association of Orthodontists,
  6. Park JB, Bronzino JD. Biomaterials: principles and applications. CRC Press, 2002 Aug 29.
  7. Parida P, Behera A, Mishra SC. Classification of Biomaterials used in Medicine. Int J Adv Appl Sci 2012;1(3). DOI: 10.11591/ijaas.v1i3.882
  8. Williams DF. A model for biocompatibility and its evaluation. J Biomed Eng 1989;11(3):185–191. DOI: 10.1016/0141-5425(89)90138-6
  9. Schmalz G, Bindslev D. Biocompatibility of dental materials. Berlin. Springer; 2009.
  10. Hanks CT, Wataha JC, Sun Z. In vitro models of biocompatibility: a review. Dent Mater 1996;12(3):186–193. DOI: 10.1016/s0109-5641(96)80020-0
  11. BioLabs P. Assessing biocompatibility. A Guide for Medical Device Manufacturers. 2009.
  12. Lin CW, Chung CJ, Chou CM, et al. In vitro wear tests of the dual-layer grid blasting-plasma polymerized superhydrophobic coatings on stainless steel orthodontic substrates. Thin Solid Films 2019;687:137464. DOI: 10.1016/j.tsf.2019.137464
  13. Charles C. Bonding orthodontic brackets with glass-ionomer cement. Biomaterials 1998;19(6):589–591. DOI: 10.1016/s0142-9612(97)00141-5
  14. Imai T, Watari F, Yamagata S, et al. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing. Biomaterials 1998;19(23):2195–2200. DOI: 10.1016/s0142-9612(98)00127-6
  15. Nicholson JW. Adhesive dental materials—a review. Int J Adh Adhes 1998;18(4):229–236. DOI: 10.1016/S0143-7496(98)00027-X
  16. Rondelli G, Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 1996;17(20):2003–2008. DOI: 10.1016/0142-9612(95)00352-5
  17. Bogdanski D, Köller M, Müller D, et al. Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials 2002;23(23):4549–4555. DOI: 10.1016/s0142-9612(02)00200-4
  18. Varela JC, Velo M, Espinar E, et al. Mechanical properties of a new thermoplastic polymer orthodontic archwire. Mater Sci Eng C Mater Biol Appl 2014;42:1–6. DOI: 10.1016/j.msec.2014.05.008
  19. Noronha VT, Paula AJ, Durán G, et al. Silver nanoparticles in dentistry. Dent Mate 2017;33(10):1110–1126. DOI: 10.1016/
  20. Khonina TG, Chupakhin ON, Shur VY, et al. Silicon-hydroxyapatite–glycerohydrogel as a promising biomaterial for dental applications. Colloids Surf B Biointerfaces 2020;189:110851. DOI: 10.1016/j.colsurfb.2020.110851
  21. Cho MY, Lee DW, Kim IS, et al. Evaluation of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets. Ceram Int 2019;45(6):6702–6711. DOI: 10.1016/j.ceramint.2018.12.159
  22. Wever DJ, Veldhuizen AG, Sanders MM, et al. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 1997;18(16):1115–1120. DOI: 10.1016/s0142-9612(97)00041-0
  23. Fatani EJ, Almutairi HH, Alharbi AO, et al. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Micro Pathog 2017;112:190–194. DOI: 10.1016/j.micpath.2017.09.052
  24. Pun DK, Berzins DW. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel–titanium-based orthodontic wires at various temperatures. Dent Mater 2008;24(2):221–227. DOI: 10.1016/
  25. Hanawa T. Zirconia versus titanium in dentistry: a review. Dental Mater J 2020;39(1):24–36. DOI: 10.4012/dmj.2019-172
  26. Han J, Zhang F, Van Meerbeek B, et al. Laser surface texturing of zirconia-based ceramics for dental applications: a review. Mater Sci Eng C 2021;123:112034. DOI: 10.1016/j.msec.2021.112034
  27. Cunha W, Carvalho O, Henriques B, et al. Surface modification of zirconia dental implants by laser texturing. Lasers Med Sci 2022;37(1):77–93. DOI: 10.1007/s10103-021-03475-y
  28. Hurson S. Implant/abutment biomechanics and material selection for predictable results. Compend Cont Edu Dent 2018;39(6):440–444. PMID: 30020799.
  29. Fakhri E, Eslami H, Maroufi P, et al. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020;162:956–974. DOI: 10.1016/j.ijbiomac.2020.06.211
  30. Brune D. Metal release from dental biomaterials. Biomaterials 1986;7(3):163–175. DOI: 10.1016/0142-9612(86)90097-9
  31. Bozkurt Y, Karayel E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J Mater Res Technol 2021;14:1430–1450. DOI: 10.1016/j.jmrt.2021.07.050
  32. Punia U, Kaushik A, Garg RK, et al. 3D printable biomaterials for dental restoration: a systematic review. Materials Today: Proceedings. 2022.
  33. Mo W, Qi H, Zhang F, et al. Customized protein modification improves human gingival fibroblasts adhesion on SiO2. Applied Materials Today 2021;25:101232. DOI: 10.1016/j.apmt.2021.101232
  34. Yoon S, Jung HJ, Knowles JC, et al. Digital image correlation in dental materials and related research: a review. Dent Mater 2021;37(5):758–771. DOI: 10.1016/
  35. Mehkri S, Abishek NR, Sumanth KS, et al. Study of the tribocorrosion occurring at the implant and implant alloy interface: dental implant materials. Mater TodayProceed 2021;44:157–165. DOI: 10.1016/j.matpr.2020.08.550
  36. Revathi A, Borrás AD, Muñoz AI, et al. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Mater Sci Eng C 2017;76:1354–1368. DOI: 10.1016/j.msec.2017.02.159
  37. Cakan U, Delilbasi C, Er S, et al. Is it safe to reuse dental implant healing abutments sterilized and serviced by dealers of dental implant manufacturers? An in vitro sterility analysis. Imp Dent 2015;24(2):174–179. DOI: 10.1097/ID.0000000000000198
  38. Camilleri J, Moliz TA, Bettencourt A, et al. Standardization of antimicrobial testing of dental devices. Dent Mater 2020;36(3):e59–e73. DOI: 10.1016/
  39. Chakmakchi M, Ntasi A, Mueller WD, et al. Effect of Cu and Ti electrodes on surface and electrochemical properties of electro discharge machined (EDMed) structures made of Co-Cr and Ti dental alloys. Dent Mater 2021;37(4):588–596. DOI: 10.1016/
  40. Wong CS. Surface and biological characterization of biomaterials. InStructural Biomaterials 2021:33–66. DOI: 10.1016/B978-0-12-818831-6.00002-1
  41. Cordeiro JM, Faverani LP, Grandini CR, et al. Characterization of chemically treated Ti-Zr system alloys for dental implant application. Mater Sci Eng C 2018;92:849–861. DOI: 10.1016/j.msec.2018.07.046
  42. Hoque ME, Showva NN, Ahmed M, et al. Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. Heliyon 2022;8(11):e11300. DOI: 10.1016/j.heliyon.2022.e11300
  43. Singh R, Singh S, Hashmi MS. Implant materials and their processing technologies.
  44. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24(3):299–307. DOI: 10.1016/
  45. Akay C, Ersöz MB. PEEK in dentistry, properties and application areas. Int Dent Res 2020;10(2):60–65. DOI: 10.5577/intdentres.2020.vol10.no2.6
  46. Pugliese R, Beltrami B, Regondi S, et al. Polymeric biomaterials for 3D printing in medicine: an overview. Annals 3D Print Med 2021;2:100011. DOI: 10.1016/j.stlm.2021.100011
  47. Hong Q, Lin L, Li Q, et al. A direct slicing technique for the 3D printing of implicitly represented medical models. Comput Biol Med 2021;135:104534. DOI: 10.1016/j.compbiomed.2021.104534
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.