World Journal of Dentistry

Register      Login

VOLUME 14 , ISSUE 5 ( May, 2023 ) > List of Articles


Bone Regenerative Potential of a Recombinant Parathormone Derivative in Experimentally Induced Critical-size Calvarial Defects in Wistar Albino Rats

Swarna Meenakshi, Karthik G Mohanraj

Keywords : Bone regeneration, Calvarial defects, Histomorphometry, Parathormone, Recombinant parathormone derivative, Teriparatide

Citation Information : Meenakshi S, Mohanraj KG. Bone Regenerative Potential of a Recombinant Parathormone Derivative in Experimentally Induced Critical-size Calvarial Defects in Wistar Albino Rats. World J Dent 2023; 14 (5):452-461.

DOI: 10.5005/jp-journals-10015-2243

License: CC BY-NC 4.0

Published Online: 02-08-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: The aim of the study was to analyze the bone regenerative potential of a recombinant parathormone derivative in experimentally induced critical-size calvarial defects in Wistar albino rats. Materials and methods: Critical-size cranial defects were created in 30 Wistar albino rats which were randomly divided into five groups. Group I was the sham control, in groups II, III, and IV defect was filled with 10, 20, and 40 μg concentrations of recombinant parathyroid hormone (PTH) respectively, in group V, the defect was filled with β-tricalcium phosphate (TCP) + hydroxyapatite (HA). The bone regeneration was assessed at 30 and 60 days, postoperatively by histopathology, histomorphometry, and radiographs. At the end of the experiment, a toxicity analysis was also done. Results: Histological evaluation showed trabecular bone formation in the groups that received parathormone derivative. Histomorphometry showed lesser inflammatory changes, better bone width, improved thickness of bone trabeculae, better bone quality, increased osteocyte count, and a higher percentage of new bone formation in group IV. The radiographs also showed improved bone regeneration in group IV. The serum biochemical parameters such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) showed significant alterations (p < 0.01) in all the treatment groups when compared to the control group. Conclusion: The results suggest that the local administration of recombinant parathormone derivative encouraged bone healing in critical-size calvarial defects in rats. The 40 μg concentration is found to be the most effective dosage with no associated organ toxicity. Clinical significance: Complete alveolar bone regeneration is still an elusive goal in periodontal therapy. Local application of recombinant parathormone derivative might have a promising role in periodontal regeneration.

  1. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976;34(3):235–249. PMID: 765622.
  2. Ramseier CA, Rasperini G, Batia S, et al. Advanced reconstructive technologies for periodontal tissue repair. Periodontol 2000 2012;59(1):185–202. DOI: 10.1111/j.1600-0757.2011.00432.x.
  3. Misch CM. Autogenous bone: is it still the gold standard? Implant Dent 2010;19(5):361. DOI: 10.1097/ID.0b013e3181f8115b
  4. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989;3(3):192–195. DOI: 10.1097/00005131-198909000-00002
  5. Johansson B, Grepe A, Wannfors K, et al. A clinical study of changes in the volume of bone grafts in the atrophic maxilla. Dentomaxillofac Radiol 2001;30(3):157–161. DOI: 10.1038/sj/dmfr/4600601
  6. Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005;16(6):981–989. DOI: 10.1097/01.scs.0000179662.38172.dd
  7. Reddi AH, Wientroub S, Muthukumaran N. Biologic principles of bone induction. Orthop Clin North Am 1987;18:207–212. PMID: 3561974.
  8. Lee M-J, Kim B-O, Yu S-J. Clinical evaluation of a biphasic calcium phosphate grafting material in the treatment of human periodontal intrabony defects. J Periodontal Implant Sci 2012;42(4):127–135. DOI: 10.5051/jpis.2012.42.4.127
  9. Shiratori K, Matsuzaka K, Koike Y, et al. Bone formation in beta-tricalcium phosphate-filled bone defects of the rat femur: morphometric analysis and expression of bone related protein mRNA. Biomed Res 2005;26(2):51–59. DOI: 10.2220/biomedres.26.51
  10. Precheur HV. Bone graft materials. Dent Clin North Am 2007;51(3): 729–746. DOI: 10.1016/j.cden.2007.03.004
  11. Deal C, Gideon J. Recombinant human PTH 1-34(Forteo): an anabolic drug for osteoporosis. Cleve Clin J Med 2003;70(7):585–586, 589–590, 592–594 passim. DOI: 10.3949/ccjm.70.7.585
  12. Friedl G, Turner RT, Evans GL, et al. Intermittent parathyroid hormone (PTH) treatment and age-dependent effects on rat cancellous bone and mineral metabolism. J Orthopaedic Res 2007;25(11):1454–1464. DOI: 10.1002/jor.20433
  13. Berg C, Neumeyer K, Kirkpatrick P. Teriparatide. Nat Rev Drug Discov 2003;2(4):257–258. DOI: 10.1038/nrd1068
  14. Aggarwal P, Zavras A. Parathyroid hormone and its effects on dental tissues. Oral Dis 2012;18(1):48–54. DOI: 10.1111/j.1601-0825.2011.01850.x
  15. Kempen DHR, Lu L, Hefferan TE, et al. Enhanced BMP-2 induced ectopic and orthotopic bone formation by intermittent PTH (1-34) administration. Tissue Eng Part A 2010;16:3769–3777. DOI: 10.1089/ten.TEA.2010.0173
  16. Li YF, Li XD, Bao CY, et al. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1-34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int 2013;24(3):1063–1071. DOI: 10.1007/s00198-012-2258-5
  17. Gabet Y, Kohavi D, Müller R, et al. Intermittently administered parathyroid hormone 1–34 reverses bone loss and structural impairment in orchiectomized adult rats. Osteoporos Int 2005;16(11):1436–1443. DOI: 10.1007/s00198-005-1876-6
  18. Kneissel M, Boyde A, Gasser JA. Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1-34). Bone 2001;28(3):237–250. DOI: 10.1016/s8756-3282(00)00448-8
  19. Kuroshima S, Al-Salihi Z, Yamashita J. Parathyroid hormone related to bone regeneration in grafted and nongrafted tooth extraction sockets in rats. Implant Dent 2013;22(1):71–76. DOI: 10.1097/ID.0b013e318278f94d
  20. Andreassen TT, Cacciafesta V. Intermittent parathyroid hormone treatment enhances guided bone regeneration in rat calvarial bone defects. J Craniofac Surg 2004;15(3):424–427. DOI: 10.1097/00001665-200405000-00014
  21. Heo HA, Park SH, Jeon YS, et al. Enhancing effect of intermittent parathyroid hormone administration on bone formation after titanium implant placement in an ovariectomized rat maxilla. Implant Dent 2016;25(2):227–231. DOI: 10.1097/ID.0000000000000352
  22. Karring T, Nyman S, Lindhe J. Healing following implantation of periodontitis affected roots into bone tissue. J Clin Periodontol 1980;7(2):96–105. DOI: 10.1111/j.1600-051x.1980.tb01952.x
  23. Mittal M, Chandra S, Chandra S. Comparative tissue toxicity evaluation of four endodontic sealers. J Endod 1995;21(12):622–624. DOI: 10.1016/S0099-2399(06)81116-7
  24. Nyman S, Karring T, Lindhe J, et al. Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol 1980;7(5):394–401. DOI: 10.1111/j.1600-051x.1980.tb02012.x
  25. Brommage R, Hotchkiss CE, Lees CJ, et al. Daily treatment with human recombinant parathyroid hormone-(1–34), LY333334, for 1 year increases bone mass in ovariectomized monkeys. J Clin Endocrinol Metab 1999;84(10):3757–3763. DOI: 10.1210/jcem.84.10.6039
  26. Jerome CP, Johnson CS, Vafai HT, et al. Effect of treatment for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 1999;25(3):301–309. DOI: 10.1016/s8756-3282(99)00166-0
  27. Jilka RL, Weinstein RS, Bellido T, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Investig 1999;104:439–446. DOI: 10.1172/JCI6610
  28. Reeve J. PTH: a future role in the management of osteoporosis? J Bone Miner Res 2009;11(4):440–445. DOI: 10.1002/jbmr.5650110404
  29. Stewart AF. PTHrP(1–36) as a skeletal anabolic agent for the treatment of osteoporosis. Bone 1996;19(4):303–306. DOI: 10.1016/s8756-3282(96)00221-9
  30. Podbesek R, Edouard C, Meunier PJ, et al. Effects of two treatment regimes with synthetic human parathyroid hormone fragment on bone formation and the tissue balance of trabecular bone in greyhounds. Endocrinology 1983;112(3):1000–1006. DOI: 10.1210/endo-112-3-1000
  31. Slovik DM, Rosenthal DI, Doppelt SH, et al. Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1-34) and 1,25-dihydroxyvitamin D. J Bone Mineral Res 2009;1(4):377–381. DOI: 10.1002/jbmr.5650010411
  32. Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. The Lancet 1997;350(9077):550–555. DOI: 10.1016/S0140-6736(97)02342-8
  33. Ming N, Cheng JT-Y, Rui Y-F, et al. Dose-dependent enhancement of spinal fusion in rats with teriparatide (PTH [1–34]). Spine 2012;37(15):1275–1282. DOI: 10.1097/BRS.0b013e31824ac089
  34. Alkhiary YM, Gerstenfeld LC, Krall E, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1–34). J Bone Joint Surg Am 2005;87(4):731–741. DOI: 10.2106/JBJS.D.02115
  35. Komatsubara S, Mori S, Mashiba T, et al. Human parathyroid hormone (1–34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone 2005;36(4):678–687. DOI: 10.1016/j.bone.2005.02.002
  36. Mognetti B, Marino S, Barberis A, et al. Experimental stimulation of bone healing with teriparatide: histomorphometric and microhardness analysis in a mouse model of closed fracture. Calcif Tissue Int 2011;89(2):163–171. DOI: 10.1007/s00223-011-9503-3
  37. Nozaka K, Miyakoshi N, Kasukawa Y, et al. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone 2008;42(1):90–97. DOI: 10.1016/j.bone.2007.08.041
  38. Prolo DJ, Pedrotti PW, Burres KP, et al. Superior osteogenesis in transplanted allogeneic canine skull following chemical sterilization. Clin Orthop Relat Res 1982;(168):230–242. PMID: 7049486.
  39. Tsunori K, Sato S, Hasuike A, et al. Effects of intermittent administration of parathyroid hormone on bone augmentation in rat calvarium. Implant Dent 2015;24(2):142–148. DOI: 10.1097/ID.0000000000000228
  40. Kajii F, Iwai A, Tanaka H, et al. Single-dose local administration of teriparatide with a octacalcium phosphate collagen composite enhances bone regeneration in a rodent critical-sized calvarial. J Biomed Mater Res B Appl Biomater 2018;106(5):1851–1857. DOI: 10.1002/jbm.b.33993
  41. Auersvald CM, Santos FR, Nakano MM, et al. The local administration of parathyroid hormone encourages the healing of bone defects in the rat calvaria: micro-computed tomography, histological and histomorphometric evaluation. Arch Oral Biol 2017;79:14–19. DOI: 10.1016/j.archoralbio.2017.02.016
  42. Özer T, Başlarlı Ö, Aktaş A, et al. Locally administrated single-dose teriparatide affects critical-size rabbit calvarial defects: a histological, histomorphometric and micro-CT study. Acta Orthop Traumatol Turc 2019;53(6):478–484. DOI: 10.1016/j.aott.2019.08.007
  43. Yun JI, Wikesjö UM, Borke JL, et al. Effect of systemic parathyroid hormone (1-34) and a beta-tricalcium phosphate biomaterial on local bone formation in a critical-size rat calvarial defect model. J Clin Periodontol 2010;37(5):419–426. DOI: 10.1111/j.1600-051X.2010.01547.x
  44. Tokunaga K, Seto H, Ohba H, et al. Topical and intermittent application of parathyroid hormone recovers alveolar boneloss in rat experimental periodontitis. J Periodontal Res 2011;46:655–662. DOI: 10.1111/j.1600-0765.2011.01386.x
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.