Local Immune Response to Mineral Trioxide Aggregate: A Narrative Review
Shilpa Bhandi, Oladapo T Okareh
Keywords :
Cytokines, Immunity, Inflammation, M2 macrophage, Mineral trioxide aggregate
Citation Information :
Bhandi S, Okareh OT. Local Immune Response to Mineral Trioxide Aggregate: A Narrative Review. World J Dent 2023; 14 (4):382-387.
Aims and background: Mineral trioxide aggregate (MTA) is a bioactive calcium (Ca) silicate-based material that is commonly used in endodontic and restorative procedures. The material interacts with living host tissues in close proximity to promote tissue healing. This paper reviews the interaction and effect of MTA on the various components of the local immune response cascade.
Results: Mineral trioxide aggregate (MTA) is capable of releasing Ca ions (Ca2+), increasing the alkalinity of surrounding tissues, and altering enzymatic activity within cells. By recruiting cells to the application site, MTA is capable of eliciting a local immune response. MTA has been found to enhance the actions of interleukin-1α (IL-1α), IL-6, and IL-12, upregulate macrophage M2 polarization, promote angiogenesis, and suppress proinflammatory interferon (IFN) and messenger RNA (mRNA) expression of IFN-γ. However, MTA has no effect on cytokines tumor necrosis factor-α (TNF-α), RANKL, and IL-10. MTA's anti-inflammatory properties facilitate tissue healing, and the mineralization induced by MTA is significant even in the presence of systemic diseases such as diabetes mellitus and hypertension. MTA modulates the expression of various components and enzymes involved in the immune response cascade, resulting in antiinflammatory effects, angiogenesis, and optimal healing of inflamed or injured tissues.
Conclusion: Mineral trioxide aggregate (MTA) has demonstrated bioactivity and is capable of promoting healing without any cytotoxic effects. The activation and suppression of specific immune responses by MTA are responsible for its antiinflammatory properties, making it a valuable tool for clinicians in various endodontic, and restorative applications.
Clinical significance: The MTA's clinical significance lies in its ability to promote healing and modulate the immune response cascade in a manner that facilitates optimal tissue repair.
Ribeiro DA. Do endodontic compounds induce genetic damage? A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105(2):251–256. DOI: 10.1016/j.tripleo.2007.07.045
Ozbas H, Yaltirik M, Bilgic B, et al. Reactions of connective tissue to compomers, composite and amalgam root-end filling materials. Int Endod J 2003;36(4):281–287. DOI: 10.1046/j.1365-2591. 2003.00649.x
Enkel B, Dupas C, Armengol V, et al. Bioactive materials in endodontics. Expert Rev Med Devices 2008;5(4):475–494. DOI: 10.1586/17434440.5.4.475
Martínez Lalis R, Esaín ML, Kokubu GA, et al. Rat subcutaneous tissue response to modified Portland cement, a new mineral trioxide aggregate. Braz Dent J 2009;20(2):112–117. DOI: 10.1590/s0103-64402009000200004
Camilleri J, Pitt Ford TR. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 2006;39(10):747–754. DOI: 10.1111/j.1365-2591.2006.01135.x
Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J 2008;41(5):408–417. DOI: 10.1111/j.1365-2591.2007.01370.x
Dammaschke T, Gerth HU, Züchner H, et al. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21(8):731–738. DOI: 10.1016/j.dental.2005.01.019
Torabinejad M, Hong CU, McDonald F, et al. Physical and chemical properties of a new root-end filling material. J Endod 1995;21(7):349–353. DOI: 10.1016/S0099-2399(06)80967-2
Kratchman SI. Perforation repair and one-step apexification procedures. Dent Clin North Am 2004;48(1):291–307. DOI: 10.1016/j.cden.2003.12.003
Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J 2007;40(6):462–470. DOI: 10.1111/j.1365-2591.2007.01248
Camilleri J, Montesin FE, Papaioannou S, et al. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 2004;37(10):699–704. DOI: 10.1111/j.1365-2591.2004.00859.x
Braga JM, Oliveira RR, Martins RC, et al. The effects of a mineral trioxide aggregate-based sealer on the production of reactive oxygen species, nitrogen species and cytokines by two macrophage subtypes. Int Endod J 2014;47(10):909–919. DOI: 10.1111/iej.12234
Scarparo RK, Haddad D, Acasigua GA, et al. Mineral trioxide aggregate–based sealer: analysis of tissue reactions to a new endodontic material. J Endod 2010;36(7):1174–1178. DOI: 10.1016/j.joen.2010.02.031
Bender IB, Bender AB. Diabetes mellitus and the dental pulp. J Endod 2003;29(6):383–389. DOI: 10.1097/00004770-200306000-00001
Hernandez EP, Botero TM, Mantellini MG, et al. Effect of ProRoot® MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int Endod J 2005;38(2):137–143. DOI: 10.1111/j.1365-2591.2004.00922.x
Min KS, Yang SH, Kim EC. The combined effect of mineral trioxide aggregate and enamel matrix derivative on odontoblastic differentiation in human dental pulp cells. J Endod 2009;35(6):847–851. DOI: 10.1016/j.joen.2009.03.014
Kawashima N, Stashenko P. Expression of bone-resorptive and regulatory cytokines in murine periapical inflammation. Arch Oral Biol 1999;44(1):55–66. DOI: 10.1016/s0003-9969(98)00094-6
Makino Y, Cook DN, Smithies O, et al. Impaired T cell function in RANTES-deficient mice. Clin Immunol 2002;102(3):302–309. DOI: 10.1006/clim.2001.5178
Weber C, Weber KS, Klier C, et al. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+ T cells. Blood 2001;97(4):1144–1146. DOI: 10.1182/blood.v97.4.1144
Holland R, de Souza V, Nery MJ, et al. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25(3):161–166. DOI: 10.1016/s0099-2399(99)80134-4
Mente J, Geletneky B, Ohle M, et al. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 2010;36(5):806–813. DOI: 10.1016/j.joen.2010.02.024
Asgary S, Parirokh M, Eghbal MJ, et al. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med 2006;17(2):187–191. DOI: 10.1007/s10856-006-6823-3
Koh ET, Torabinejad M, Pitt Ford TR, et al. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 1997;37(3):432–439. DOI: 10.1002/(sici)1097-4636(19971205)37:3<432::aid-jbm14>3.0.co;2-d
Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995;13:251–276. DOI: 10.1146/annurev.iy.13.040195.001343
Rezende TMB, Vargas DL, Cardoso FP, et al. Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages. Int Endod J 2005;38(12):896–903. DOI: 10.1111/j.1365-2591.2005.01036.x
Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 2003;14(3-4):185–191. DOI: 10.1016/s1359-6101(03)00022-4
Rezende TMB, Vieira LQ, Cardoso FP, et al. The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages. Int Endod J 2007;40(8):603–611. DOI: 10.1111/j.1365-2591.2007.01255.x
Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev 1996;17(4):308–332. DOI: 10.1210/edrv-17-4-308
Rezende TMB, Vieira LQ, Sobrinho APR, et al. The influence of mineral trioxide aggregate on adaptive immune responses to endodontic pathogens in mice. J Endod 2008;34(9):1066–1071. DOI: 10.1016/j.joen.2008.06.006
Hasturk H, Kantarci A, Van Dyke T, et al. Oral inflammatory diseases and systemic inflammation: role of the macrophage. Front Immunol 2012;3:118. DOI: 10.3389/fimmu.2012.00118
Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91(3):295–298. DOI: 10.1016/s0092-8674(00)80412-2
Verreck FAW, de Boer T, Langenberg DML, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004;101(13):4560–4565. DOI: 10.1073/pnas.0 400983101
Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003;73(2):209–212. DOI: 10.1189/jlb.0602325
Martins-Júnior PA, Vieira-Andrade RG, Corrêa-Faria P, et al. Impact of early childhood caries on the oral health-related quality of life of preschool children and their parents. Caries Res 2013;47(3):211–218. DOI: 10.1159/000345534
Brown JN, Kohler JJ, Coberley CR, et al. HIV-1 activates macrophages independent of Toll-like receptors. PLoS One 2008;3(12):e3664. DOI: 10.1371/journal.pone.0003664
Lucarelli M, Gatti AM, Savarino G, et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 2004;15(4):339–346. PMID: 15627643.
Takei E, Shigetani Y, Yoshiba K, et al. Initial transient accumulation of M2 macrophage-associated molecule-expressing cells after pulpotomy with mineral trioxide aggregate in rat molars. J Endod 2014;40(12):1983–1988. DOI: 10.1016/j.joen.2014.08.012
Rothlin CV, Carrera-Silva EA, Bosurgi L, et al. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 2015;33:355–391. DOI: 10.1146/annurev-immunol-032414-112103
Vasconcellos BC, Tavares LCT, da Silva DC, et al. High-plasticity mineral trioxide aggregate and its effects on M1 and M2 macrophage viability and adherence, phagocyte activity, production of reactive oxygen species, and cytokines. Restor Dent Endod 2022;48(1):e6. DOI: 10.5395/rde.2023.48.e6
Ito T, Kaneko T, Yamanaka Y, et al. M2 macrophages participate in the biological tissue healing reaction to mineral trioxide aggregate. J Endod 2014;40(3):379–383. DOI: 10.1016/j.joen.2013.11.011
Yeh HW, Chiang CF, Chen PH, et al. Axl involved in mineral trioxide aggregate induces macrophage polarization. J Endod 2018;44(10):1542–1548. DOI: 10.1016/j.joen.2018.07.005
Stashenko P, Teles R, D'Souza R. Periapical inflammatory responses and their modulation. Crit Rev Oral Biol Med 1998;9(4):498–521. DOI: 10.1177/10454411980090040701
Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26(5):288–291. DOI: 10.1097/00004770-200005000-00010
Koh ET, McDonald F, Pitt Ford TR, et al. Cellular response to mineral trioxide aggregate. J Endod 1998;24(8):543–547. DOI: 10.1016/S0099-2399(98)80074-5
Stark LA, Din FV, Zwacka RM, et al. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J 2001;15(7): 1273–1275. DOI: 10.1096/fj.00-0529fje
Yamashita K, Tomokiyo A, Ono T, et al. Mineral trioxide aggregate immersed in sodium hypochlorite reduce the osteoblastic differentiation of human periodontal ligament stem cells. Sci Rep 2021;11(1):22091. DOI: 10.1038/s41598-021-01545-3
Marvar PJ, Thabet SR, Guzik TJ, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res 2010;107(2):263–270. DOI: 10.1161/CIRCRESAHA.110.217299
Bonato CF, do-Amaral CCF, Belini L, et al. Hypertension favors the inflammatory process in rats with experimentally induced periodontitis. J Periodontal Res 2012;47(6):783–792. DOI: 10.1111/j.1600-0765.2012.01496.x
Martins CM, Gomes-Filho JE, de Azevedo Queiroz ÍO, et al. Hypertension undermines mineralization-inducing capacity of and tissue response to mineral trioxide aggregate endodontic cement. J Endod 2016;42(4):604–609. DOI: 10.1016/j.joen.2016.01.003
de Azevedo Queiroz IO, Mello WG, Martins CM, et al. Systemic bone marker expression induced by grey and white mineral trioxide aggregate in normal and diabetic conditions. Int Endod J 2018;51(8):889–900. DOI: 10.1111/iej.12900
Pushpalatha C, Dhareshwar V, Sowmya SV, et al. Modified mineral trioxide aggregate—a versatile dental material: an insight on applications and newer advancements. Front Bioeng Biotechnol 2022;10:941826. DOI: 10.3389/fbioe.2022.941826