Citation Information :
Kahar LF, Azhari, Pramanik F. Analysis of Changes in Periapical Exposure Settings Osseointegration Dental implant on the Rabbit Tibia. World J Dent 2023; 14 (4):295-301.
Aim: This study analyzes changes in exposure settings periapical plane on the assessment of dental implants in rabbit tibia by analyzing image quality and osseointegration parameters.
Material and methods: A quasi-experimental study was conducted on the tibia bone of rabbits that had been implanted with dental implants for 28 days from the previous research. The sample selection in this study used a purposive sampling technique and obtained a sample of 23 periapical radiographic images of the rabbit tibia bone that had been installed with dental implants for 28 days, with each image having an exposure setting. Data were tested for normality using the Shapiro–Wilk test. Mann–Whitney conducted a qualitative assessment and one-way analysis of variance (ANOVA) and post hoc tests carried out the quantitative evaluation.
Results: Assessment results in image quality using the Mann–Whitney U test (0.001 < 0.05) and the results of the osseointegration assessment (relative bone density and fractal dimension) using the one-way ANOVA and post hoc test (0.001 < 0.01).
Conclusion: Automatic exposure settings produce better image quality, relative bone density, and fractal dimension than manual exposure settings for osseointegration dental implants.
Clinical significance: Differences in assessment of dental implant osseointegration in different periapical radiograph exposure setting groups can be obtained for the best exposure setting to evaluate dental implant osseointegration.
Sharan S, Chandra P, Kalpana D, et al. A review on dental implant impressions. Int J Appl Dent Sci 2019;5(1):33–36.
Dhaliwal JS, Albuquerque Jr RF, Murshed M, et al. Osseointegration of standard and mini dental implants: a histomorphometric comparison. Int J Implant Dent 2017;3(1):1–9. DOI: 10.1186/s40729-017-0079-1
Raikar S, Talukdar P, Kumari S, et al. Factors affecting the survival rate of dental implants: a retrospective study. J Int Soc Prev Community Dent 2017;7(6):351–355. DOI: 10.4103/jispcd.JISPCD_380_17
Alghamdi HS. Methods to improve osseointegration of dental implants in low quality (type-IV) bone: an overview. J Funct Biomater 2018;9(1):7. DOI: 10.3390/jfb9010007
Zanetti EM, Pascoletti G, Calì M, et al. Clinical assessment of dental implant stability during follow-up: what is measured, and perspectives. Biosensors (Basel) 2018;8(3):68. DOI: 10.3390/bios8030068
Geiger M. Evaluation of ImageJ for relative bone density measurement and clinical application. J Oral Heal Craniofacial Sci 2016;1:012–021. DOI: 10.29328/journal.johcs.1001002
Bollen AM, Taguchi A, Hujoel PP, et al. Fractal dimensions on dental radiographs. Dentomaxillofacial Radiol 2001;30(5):270–275. DOI: 10.1038/sj/dmfr/4600630
Kato CN, Barra SG, Tavares NP, et al. Use of fractal analysis in dental images: a systematic review. Dentomaxillofacial Radiol 2020;49(2):20180457. DOI: 10.1259/dmfr.20180457
Mu TJ, Lee DW, Park KH, et al. Changes in the fractal dimension of peri-implant trabecular bone after loading: a retrospective study. J Periodontal Implant Sci 2013;43(5):209–214. DOI: 10.5051/jpis.2013.43.5.209
Pelekos G, Tse JMN, Ho D, et al. Defect morphology, bone thickness, exposure settings, and examiner experience affect the diagnostic accuracy of standardized digital periapical radiographic images but not of cone-beam computed tomography in the detection of peri-implant osseous defects: an in vitro study. J Clin Periodontol 2019;46(12):1294–1302. DOI: 10.1111/jcpe.13200
Vandenberghe B, Jacobs R. The influence of tube potential on periodontal bone level measurements and subjective image quality using a digital photostimulable storage phosphor sensor. J Oral Maxillofac Res 2010;(1):e5. DOI: 10.5037/jomr.2010.1105
Maciel ER, Nascimento NE, Gaêta-Araujo H, et al. Automatic exposure compensation in intraoral digital radiography: effect on the gray values of dental tissues. BMC Medical Imaging 2022;22(1):1–7.
Galvão NS, Nascimento EHL, Lima CAS, et al. Can a high-density dental material affect the automatic exposure compensation of digital radiographic images? Dentomaxillofacial Radiol 2019;48(3):20180331. DOI: 10.1259/dmfr.20180331
Galvão NS, Freitas DQ, Haiter-Neto F, et al. Automatic exposure compensation and subjective image enhancement in the radiographic diagnosis of caries. Braz Oral Res 2020;34:e082. DOI: 10.1590/1807-3107bor-2020.vol34.0082
Cruz AD, Melo SL, Haiter-Neto F, et al. Effect of different tube potential settings on caries detection using PSP plate and conventional film. J Clin Diagn Res 2015;9(4):ZC58–ZC61. DOI: 10.7860/JCDR/2015/12225.5845
Moey SF, Fatin Naimah MA. Evaluation of the influence of exposure index on image quality and radiation dose. Iran J Med Phys 2019;16(4):294–299. DOI: 10.22038/ijmp.2018.33156.1404
Bachani L, Singh M, Lingappa A, et al. Ideal radiographs: an insight. IP Int J Maxillofac Imaging 2020;6(3):56–64. DOI: 10.18231/j.ijmi.2020.017
Zhang CN, Zhu Y, Fan LF, et al. Intra- and inter-observer agreements in detecting peri-implant bone defects between periapical radiography and cone-beam computed tomography: a clinical study. J Dent Sci 2021;16(3):948–956. DOI: 10.1016/j.jds.2020.10.013
Sharma R, Sharma SD, Pawar S, et al. Radiation dose to patients from X-ray radiographic examinations using computed radiography imaging system. J Med Phys 2015;40(1):29–37. DOI: 10.4103/0971-6203.152244
Stokholm R, Spin-Neto R, Nyengaard JR, et al. Comparison of radiographic and histological assessment of peri-implant bone around oral implants. Clin Oral Implants Res 2016;27(7):782–786. DOI: 10.1111/clr.12683
Benchimol D, Näsström K, Shi XQ. Evaluation of automatic exposure control in a direct digital intraoral system. Dentomaxillofacial Radiol 2009;38(6):407–412. DOI: 10.1259/dmfr/22255081
Eller A, Wuest W, Kramer M, et al. Carotid CTA: radiation exposure and image quality with attenuation-based, automated kilovolt selection. AJNR Am J Neuroradiol 2014;35(2):237–241. DOI: 10.3174/ajnr.A3659
Grzebieluch W, Kaczmarek U, Staniowski T, et al. Does image file transfer, exposure time, and optimization algorithm affect digital intraoral radiographs? Adv Clin Exp Med 2020;29(12):1449–1458. DOI: 10.17219/acem/128231
Nóbrega NFS, Puchnick A, Costa C, et al. In vitro study on radiographic gray levels of biomaterials using two digital image methods. Rev Odonto Cienc 2012;27(3):218–222. DOI: 10.1590/S1980-65232012000300008
Poleti ML, Fernandes TM, Teixeira RC, et al. Analysis of the reproducibility of the gray values and noise of a direct digital radiography system. Braz Oral Res 2015;29(1):S1806-83242015000100259. DOI: 10.1590/1807-3107BOR-2015.vol29.0062
Baksi BG, Fidler A. Image resolution and exposure time of digital radiographs affecting the fractal dimension of periapical bone. Clin Oral Investig 2012;16(5):1507–1510. DOI: 10.1007/s00784-011-0639-3