World Journal of Dentistry

Register      Login

VOLUME 14 , ISSUE 2 ( February, 2023 ) > List of Articles

ORIGINAL RESEARCH

A Comparative Evaluation of the Shear Bond Strength of Veneering Ceramics and Composite Resin to Zirconia Core: An In Vitro Study

Sapna Chengappa Kambiranda, Nitesh Shetty, Adamane S Chaitra, Ashrath Azwin, Riaz Abdulla, A Fahizah

Keywords : Composite, E.max, Shear bond strength, Zirconia, Zirconia reinforced feldspar

Citation Information : Kambiranda SC, Shetty N, Chaitra AS, Azwin A, Abdulla R, Fahizah A. A Comparative Evaluation of the Shear Bond Strength of Veneering Ceramics and Composite Resin to Zirconia Core: An In Vitro Study. World J Dent 2023; 14 (2):149-154.

DOI: 10.5005/jp-journals-10015-2182

License: CC BY-NC 4.0

Published Online: 17-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Aim: To evaluate the shear bond strength (SBS) values of commercially veneering ceramics and composite resin layered to zirconia (Zr) core and compare the results with that of porcelain fused to metal (PFM) samples. Materials and methods: Schmitz–Schulmeyer test was used to determine the SBS. A total of 30 Zr blocks of dimensions 10 × 5 × 5 mm were divided into three groups (I, II, and III) of 10 samples each. Group I samples were veneered with IPS e.max Ceram, group II with Zr reinforced feldspar (Zr-FS), and group III with composite. Group IV consisted of PFM blocks as the control group. The fabricated samples were then subjected to thermocycling and evaluated for SBS in a universal testing machine. The values were then statistically analyzed using an independent sample t-test. Result: The results of the current study showed that the SBS value of PFM blocks (19.51 MPa) was the highest, and that of Zr composite (7.03 MPa) was the least among all the four groups. IPS e.max and Zr-FS veneering ceramics showed similar strength values (9.32 and 9.46 MPa, respectively). Conclusion: This in vitro study revealed that the PFM group exhibited the highest SBS, while the Zr-composite the least among all the groups tested. Clinical significance: This study will aid in the clinical selection of the core veneer material depending on the esthetic need and functional requirements. Greater translucency and comparable strength exhibited by the Zr core ceramic veneer make it a valuable alternative in the anterior esthetic region due to the reduced bite forces involved.


PDF Share
  1. Tian M, Ma S, Niu L, et al. Gingival pigmentation by Ni-Cr-based metal ceramic crowns: a clinical report. J Prosthet Dent 2016;115(1):1–4. DOI: 10.1016/j.prosdent.2015.08.015
  2. Griggs JA. Recent advances in materials for all-ceramic restorations. Dent Clin N A 2007;51(3):713–727. DOI: 10.1016/j.cden.2007.04.006
  3. Fabris D, Souza JC, Silva FS, et al. Thermal residual stresses in bilayered, trilayered and graded dental ceramics. Ceram Int 2017;43(4):3670–3678. DOI: 10.1016/j.ceramint.2016.11.209
  4. Subash M, Vijitha D, Deb S, et al. Evaluation of shear bond strength between zirconia core and ceramic veneers fabricated by pressing and layering techniques: in vitro study. J Pharm Bioallied Sci 2015;7(Suppl 2):S612–S615. DOI: 10.4103/0975-7406.163568
  5. Tan K, Pjetursson BE, Lang NP, et al. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004;15(6):654–666. DOI: 10.1111/j.1600-0501.2004.01119.x
  6. Santos RL, Silva FS, Nascimento RM, et al. On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain. Ceram Int 2016;42(12):14214–14221. DOI: 10.1016/j.ceramint.2016.05.195
  7. El-Agwany MA, Wahsh MM, Morsi TS. Effect of veneering techniques and subsequent aging on translucency of bilayered zirconia. Futur Dent J 2018;4(2):274–278. DOI: 10.1016/j.fdj.2018.05.009
  8. Alsadon O, Patrick D, Johnson A, et al. Fracture resistance of zirconia- composite veneered crowns in comparison with zirconia-porcelain crowns. Dent Mater J 2017;36(3):289–295. DOI: 10.4012/dmj.2016-298
  9. Moses A, Ganesan L, Shankar S, et al. A comparative evaluation of shear bond strength between feldspathic porcelain and lithium disilicate ceramic layered to a zirconia core– an in vitro study. J Clin Exp Dent 2020;12(11):1039–1044. DOI: 10.4317/jced.57569
  10. Isgro G, Pallav P, van der Zel JM, et al. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. J Prosthet Dent 2003;90(5):465–473. DOI: 10.1016/j.prosdent.2003.08.003
  11. Kim HJ, Lim HP, Park YJ, et al. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 2011;105(5):315–322. DOI: 10.1016/S0022-3913(11)60060-7
  12. Guess PC, Kulis A, Witkowski S, et al. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008;24(11):1556–1567. DOI: 10.1016/j.dental.2008.03.028
  13. Isgro G, Wang H, Kleverlaan CJ, et al. The effects of thermal mismatch and fabrication procedures on the deflection of layered all-ceramic discs. Dent Mater 2005;21(7):649–655. DOI: 10.1016/j.dental.2004.09.001
  14. Biomaterials Properties Online Database. University of Michigan. Quintessence Publishing 1996; http://www.lib.umich.edu/dentlib/Dental tables/thermcond.html
  15. Hermann I, Bhowmick S, Zhang Y, et al. Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: trilayer structures. J Mater Res 2006;21(2):512–521. DOI: 10.1557/jmr.2006.0056
  16. Mora GP, O'Brien WJ. Thermal shock resistance of core reinforced all-ceramic crown systems. J Biomed Mater Res 1994;28(2):189–194. DOI: 10.1002/jbm.820280208
  17. Mackert JR Jr, Ringle RD, Parry EE, et al. The relationship between oxide adherence and porcelain-metal bonding. J Dent Res 1988;67(2):474–478. DOI: 10.1177/00220345880670020801
  18. Schweitzer DM, Goldstein GR, Ricci JL, et al. Comparison of bond strength of a pressed ceramic fused to metal versus feldspathic porcelain fused to metal. J Prosthodont 2005;14(4):239–247. DOI: 10.1111/j.1532-849X.2005.00052.x
  19. Smith TB, Kelly JR, Tesk JA. In vitro fracture behavior of ceramic and metal-ceramic restorations. J Prosthodont 1994;3(3):138–144. DOI: 10.1111/j.1532-849x.1994.tb00144.x
  20. Al-Dohan HM, Yaman P, Dennison JB, et al. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91(4):349–355. DOI: 10.1016/j.prosdent.2004.02.009
  21. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Residual stresses in bilayer dental ceramics. Biomaterials 2005;26(16):3235–3241. DOI: 10.1016/j.biomaterials.2004.08.025
  22. Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008;27(3):448–454. DOI: 10.4012/dmj.27.448
  23. Kosmac T, Oblak C, Jevnikar P, et al. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15(6):426–433. DOI: 10.1016/s0109-5641(99)00070-6
  24. Guazzato M, Quach L, Albakry M, et al. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33(1):9–18. DOI: 10.1016/j.jdent.2004.07.001
  25. Kosmac T, Oblak C, Jevnikar P, et al. Strength and reliability of surface- treated YTZP dental ceramics. J Biomed Mater Res 2000;53(4):304–313. DOI: 10.1002/1097-4636(2000)53:4<304::aid-jbm4>3.0.co;2-s
  26. Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dent Mater 2005;21(5):476–482. DOI: 10.1016/j.dental.2004.07.013
  27. Zakavi F, Mombeini M, Dibazar S, et al. Evaluation of shear bond strength of zirconia to composite resin using different adhesive systems. J Clin Exp Dent 2019;11(3):257–263. DOI: 10.4317/jced.55428
  28. Thompson JY, Stoner BR, Piascik JR, et al. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent Mater 2011;27(1):71–82. DOI: 10.1016/j.dental.2010.10.022
  29. Gowida MA, Aboushelib MN. Bonding to zirconia (a systematic review). J Dent Sci 2016;1(1):1–20. DOI: 10.23880/oajds-16000102
  30. Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement. Ceram Int 2016;42(1):1552–1562. DOI: 10.1016/j.ceramint.2015.09.104
  31. Pott PC, Stiesch M, Eisenberger M. Influence of 10-MDP adhesive system on shear bond strength of zirconia-composite interfaces. J Dent Mater Tech 2015;4(3):117–126. DOI: 10.22038/jdmt.2015.4594
  32. Sreekala L, Narayanan M, Eerali SM, et al. Comparative evaluation of shear bond strengths of veneering porcelain to base metal alloy and zirconia substructures before and after aging - an in vitro study. J Int Soc Prev Community Dent 2015;5(Suppl 2):S74–S81. DOI: 10.4103/2231-0762.171590
  33. Chen C, Chen Y, Lu Z, et al. The effects of water on the degradation of the zirconia-resin bond. J Dent 2017;64:23–29. DOI: 10.1016/j.jdent.2017.04.004
  34. Alex G. Universal adhesives: the next evolution in adhesive dentistry? Compend Contin Educ Dent 2015;36(1):15–26.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.