Metformin Restores Regenerative Potential of Oral Stem Cells in Periodontitis
Hammam I Fageeh, Hammam Ibrahim Fageeh, Ahmed Alamoudi, Hammam A Bahammam, Sarah A Bahammam, Maha A Bahammam, Bassam Zidane, Hussam Alhejaili, Hytham N Fageeh
Citation Information :
Fageeh HI, Fageeh H I, Alamoudi A, Bahammam HA, Bahammam SA, Bahammam MA, Zidane B, Alhejaili H, Fageeh HN. Metformin Restores Regenerative Potential of Oral Stem Cells in Periodontitis. World J Dent 2023; 14 (2):103-112.
Background: Dental pulp stem cells (DPSC) represent a unique population of multipotent stem cells derived from diverse parts of a tooth.
Objective: This study examined the effects of metformin (Met) on restoring the regenerative potential of stem cells treated with gingival crevicular fluid (GCF) from periodontitis patients.
Materials and methods: Dental pulp stem cells (DPSC) were isolated from healthy human teeth. GCF was collected from patients with periodontitis, and cytokine levels were assessed. A cytotoxicity assay was done to examine the impact of Met on DPSCs with and without osteogenic induction. Mesenchymal stem cell surface markers and differentiation assays were performed.
Results: The stem cells showed typical mesenchymal stem cell-like morphology and were 85% positive for CD105, CD90, and CD73 and negative for major histocompatibility complex (MHC) class II antigen (Ag) human leukocyte Ag-DR isotype. They could be differentiated into osteoinductive, chondroinductive, and adipocyte-inducing cell types. The cytotoxicity assay showed Met tolerance for up to 7 days. The GCF contained significant levels of proinflammatory cytokines. Its effect on stem cells caused a reduction in the expression of osteogenic/odontogenic genes, namely RUNX2, ALP, OCN, DSPP, and DMP1.
Conclusion: Treatment with Met reversed this effect and resulted in higher expression of most of the downregulated genes and an increase in the formation of mineralized nodules by the treated cells. Met may serve as a stem cell modulator in tissue-engineering cases.
Clinical significance: Metformin (Met) combined with DPSC could have potential applications in therapeutic, regenerative medicine due to its positive effects on stem cells.
Sampogna G, Guraya SY, Forgione A. Regenerative medicine: historical roots and potential strategies in modern medicine. J Microsc Ultrastruct 2015;3(3):101–107. DOI: 10.1016/j.jmau.2015.05.002
Khaseb S, Orooji M, Pour MG, et al. Dental stem cell banking: techniques and protocols. Cell Biol Int 2021;45(9):1851–1865. DOI: 10.1002/cbin.11626
Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18(4):696–704. DOI: 10.1359/jbmr.2003.18.4.696
Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 2003;100(10):5807–5812. DOI: 10.1073/pnas.0937635100
Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 2007;10(3):149–160. DOI: 10.1111/j.1601-6343.2007.00399.x
Lei M, Li K, Li B, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 2014;35(24):6332–6343. DOI: 10.1016/j.biomaterials.2014.04.071
Mangano C, De Rosa A, Desiderio V, et al. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 2010;31(13):3543–3551. DOI: 10.1016/j.biomaterials.2010.01.056
Longoni A, Utomo L, van Hooijdonk I, et al. The chondrogenic differentiation potential of dental pulp stem cells. Eur Cell Mater 2020;39:121–135. DOI: 10.22203/eCM.v039a08
Luke AM, Patnaik R, Kuriadom S, et al. Human dental pulp stem cells differentiation to neural cells, osteocytes and adipocytes-an in vitro study. Heliyon 2020;6(1):e03054. DOI: 10.1016/j.heliyon.2019.e03054
Ohkoshi S, Hara H, Hirono H, et al. Regenerative medicine using dental pulp stem cells for liver diseases. World J Gastrointest Pharmacol Ther 2017;8(1):1. DOI: 10.4292/wjgpt.v8.i1.1
Sawangmake C, Rodprasert W, Osathanon T, et al. Integrative protocols for an in vitro generation of pancreatic progenitors from human dental pulp stem cells. Biochem Biophys Res Commun 2020;530(1):222–229. DOI: 10.1016/j.bbrc.2020.06.145
Neves VCM, Yianni V, Sharpe PT. Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis. Sci Rep 2020;10:1–9. DOI: 10.1038/s41598-020-77161-4
Croci S, Bonacini M, Dolci G, et al. Human dental pulp stem cells modulate cytokine production in vitro by peripheral blood mononuclear cells from coronavirus disease 2019 patients. Front cell Dev Biol 2021;8:1876. DOI: 10.3389/fcell.2020.609204
Bhandi S, Alkahtani A, Reda R, et al. Parathyroid Hormone secretion and receptor expression determine the age-related degree of osteogenic differentiation in dental pulp stem cells. J Pers Med 2021;11(5):349. DOI: 10.3390/jpm11050349
Boreak N, Alkahtani A, Alzahrani K, et al. Dose-dependent effect of cordycepin on viability, proliferation, cell cycle, and migration in dental pulp stem cells. J Pers Med 2021;11(8):718. DOI: 10.3390/jpm11080718
Patil S, Reda R, Boreak N, et al. Adipogenic stimulation and pyrrolidine dithiocarbamate induced osteogenic inhibition of dental pulp stem cells is countered by cordycepin. J Pers Med 2021;11(9):915. DOI: 10.3390/jpm11090915
Huang X, Li Z, Liu A, et al. Microenvironment influences odontogenic mesenchymal stem cells mediated dental pulp regeneration. Front Physiol 2021;12:656588. DOI: 10.3389/fphys.2021.656588
Kong Y, Hu X, Zhong Y, et al. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling. Stem Cell Res Ther 2019;10(1):1–11. DOI: 10.1186/s13287-019-1493-5
Sui BD, Hu CH, Liu AQ, et al. Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomaterials 2019;196:18–30. DOI: 10.1016/j.biomaterials.2017.10.046
Wilton JM, Bampton JL, Griffiths GS, et al. Interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid from adults with previous evidence of destructive periodontitis. A cross sectional study. J Clin Periodontol 1992;19(1):53–57. DOI: 10.1111/j.1600-051x.1992.tb01149.x
Madureira DF, Lucas De Abreu Lima I, Costa GC, et al. Tumor necrosis factor-alpha in gingival crevicular fluid as a diagnostic marker for periodontal diseases: a systematic review. J Evid Based Dent Pract 2018;18(4):315–331. DOI: 10.1016/j.jebdp.2018.04.001
Araújo AA, Pereira ASBF, Medeiros CACX, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One 2017;12(8):e0183506. DOI: 10.1371/journal.pone.0183506
Houshmand B, Tabibzadeh Z, Motamedian SR, et al. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes. Arch Oral Biol 2018;95:44–50. DOI: 10.1016/j.archoralbio.2018.07.012
Boreak N, Khayrat NMA, Shami AO, et al. Metformin pre-conditioning enhances the angiogenic ability of the secretome of dental pulp stem cells. Saudi Pharm J 2021;29(8):908–913. DOI: 10.1016/j.jsps.2021.07.004
Zhang S, Zhang R, Qiao P, et al. Metformin-induced microRNA-34a-3p downregulation alleviates senescence in human dental pulp stem cells by targeting CAB39 through the AMPK/mTOR signaling pathway. Stem Cells Int 2021;2021:6616240. DOI: 10.1155/2021/6616240
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol 2018;89(Suppl 1):S159–S172. DOI: 10.1002/JPER.18-0006
Nazar Majeed Z, Philip K, Alabsi AM, et al. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: a systematic review. Dis Markers 2016;2016:1804727. DOI: 10.1155/2016/1804727
Alansary M, Drummond B, Coates D. Immunocytochemical characterization of primary teeth pulp stem cells from three stages of resorption in serum-free medium. Dent Traumatol 2021;37(1):90–102. DOI: 10.1111/edt.12607
Varga G, Gerber G. Mesenchymal stem cells of dental origin as promising tools for neuroregeneration. Stem Cell Res Ther 2014;5(2):61. DOI: 10.1186/scrt450
Fatima T, Khurshid Z, Rehman A, et al. Gingival crevicular fluid (GCF): a diagnostic tool for the detection of periodontal health and diseases. Molecules 2021;26(5):1208. DOI: 10.3390/molecules26051208
Thomas I, Gregg B. Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes 2017;18(1):10–16. DOI: 10.1111/pedi.12473
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013;56(9):1898–1906. DOI: 10.1007/s00125-013-2991-0
Pradeep AR, Rao NS, Naik SB, et al. Efficacy of varying concentrations of subgingivally delivered metformin in the treatment of chronic periodontitis: a randomized controlled clinical trial. J Periodontol 2013;84(2):212–220. DOI: 10.1902/jop.2012.120025
Tan Y, Chen J, Jiang Y, et al. The anti-periodontitis action of metformin via targeting NLRP3 inflammasome. Arch Oral Biol 2020;114:104692. DOI: 10.1016/j.archoralbio.2020.104692
Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 2015;15(3):196–205. DOI: 10.2174/1871530315666150316124019
Qu S, Zhang C, Liu D, et al. Metformin protects ARPE-19 cells from glyoxal-induced oxidative stress. Oxid Med Cell Longev 2020;2020:1740943. DOI: 10.1155/2020/1740943
Zhao X, Pathak JL, Huang W, et al. Metformin enhances osteogenic differentiation of stem cells from human exfoliated deciduous teeth through AMPK pathway. J Tissue Eng Regen Med 2020;14(12):1869–1879. DOI: 10.1002/term.3142
Park MJ, Moon SJ, Baek JA, et al. Metformin augments anti-inflammatory and chondroprotective properties of mesenchymal stem cells in experimental osteoarthritis. J Immunol 2019;203(1):127–136. DOI: 10.4049/jimmunol.1800006
Wang S, Xia Y, Ma T, et al. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res 2019;9(1):85–96. DOI: 10.1007/s13346-018-00600-3