World Journal of Dentistry

Register      Login

VOLUME 14 , ISSUE 10 ( October, 2023 ) > List of Articles


MicroRNA-221-5p, MicroRNA-222-5p, and MicroRNA-223-5p Expression Patterns in Association with the Pathogenesis of Periodontal Disease: A Case–Control Analysis

Dhathri P Bandi, Snophia R Rajamani, Harinath Parthasarathy, Balasubramanian Krishnaswamy

Keywords : Microribonucleic acid, Microribonucleic acid-221/222, Microribonucleic acid-223, Periodontitis, Saliva

Citation Information : Bandi DP, Rajamani SR, Parthasarathy H, Krishnaswamy B. MicroRNA-221-5p, MicroRNA-222-5p, and MicroRNA-223-5p Expression Patterns in Association with the Pathogenesis of Periodontal Disease: A Case–Control Analysis. World J Dent 2023; 14 (10):838-843.

DOI: 10.5005/jp-journals-10015-2310

License: CC BY-NC 4.0

Published Online: 07-11-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Aim: To evaluate and compare the expression pattern of microribonucleic acid [micro-RNA (miR)]-221, 222, and 223 in the saliva of patients with periodontal disease and to determine the potential diagnostic marker for periodontitis. Materials and methods: For the present study, 25 healthy and 25 patients with periodontal disease were involved. Demographic and clinical parameters were recorded. Unstimulated whole saliva was collected from all the individuals. From the saliva samples, miR was isolated with a miRNeasy isolation advanced kit. Real-time polymerase chain reaction was used to quantify miR-221, 222, and 223 and to analyze the expression levels. Target gene prediction for the miRs was performed with miRTargetLink 2.0 bioinformatic online tool. The data obtained was statistically analyzed. Results: The expression analysis revealed that miR-221-5p, miR-222-5p, and miR-223-5p were upregulated by 5.71, 3.05, and 19.84 fold in periodontal disease patients with the p-value of <0.01. Compared to the other miRs, miR-223 was positively and significantly correlated with the probing pocket depth (PPD) and clinical attachment level. With a diagnostic accuracy of 86% and an area under the curve (AUC) of 0.859, miR-223-5p exhibited high sensitivity and specificity to distinguish periodontitis patients from healthy individuals with a p-value of <0.01. Conclusion: The findings of the present study demonstrate that miR-223-5p may be associated with the pathogenesis of periodontal disease. It could serve as a diagnostic marker and potentially predict the onset and severity of periodontitis. Clinical significance: Biomarkers that indicate early diagnosis must be identified to reduce the incidence of periodontal disease, as miRs can target multiple genes and influence various regulatory networks, making them highly promising molecules that can serve as diagnostic markers and dynamic miR-based therapeutic agents for the management of periodontal disease.

  1. Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000 2014;64(1):95–110. DOI: 10.1111/prd.12000
  2. Pajares MJ, Alemany-Cosme E, Goñi S, et al. Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci 2021;22(14): DOI: 10.3390/ijms22147350
  3. Stark KL, Xu B, Bagchi A, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008;40(6):751–760. DOI: 10.1038/ng.138
  4. O'Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, nechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402. DOI: 10.3389/fendo.2018.00402
  5. Luan X, Zhou X, Naqvi A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci 2018;10(3):24. DOI: 10.1038/s41368-018-0025-y
  6. Lian JB, Stein GS, van Wijnen AJ, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 2012;8(4):212–227. DOI: 10.1038/nrendo.2011.234
  7. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 2008;29(1):12–15. DOI: 10.1016/
  8. Chistiakov DA, Sobenin IA, Orekhov AN, et al. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int 2015;2015:354517. DOI: 10.1155/2015/354517
  9. Song J, Ouyang Y, Che J, et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front Immunol 2017;8:56. DOI: 10.3389/fimmu.2017.00056
  10. Zhou L, Jiang F, Chen X, et al. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 2016;12(6):4419–4426. DOI: 10.3892/ol.2016.5250
  11. Li MY, Pan SR, Qiu AY. Roles of microRNA-221/222 in type 2 diabetic patients with post-menopausal breast cancer. Genet Mol Res 2016;15(2): DOI: 10.4238/gmr.15027259
  12. Sun W, Shen W, Yang S, et al. miR-223 and miR-142 attenuate hematopoietic cell proliferation, and miR-223 positively regulates miR-142 through LMO2 isoforms and CEBP-β. Cell Res 2010;20(10):1158–1169. DOI: 10.1038/cr.2010.134
  13. Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008;451(7182):1125–1129. DOI: 10.1038/nature06607
  14. Stoecklin-Wasmer C, Guarnieri P, Celenti R, et al. MicroRNAs and their target genes in gingival tissues. J Dent Res 2012;91(10):934–940. DOI: 10.1177/0022034512456551
  15. Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 2012;125(23):2892–2903. DOI: 10.1161/CIRCULATIONAHA.111.087817
  16. Bellavia D, De Luca A, Carina V, et al. Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis. Bone 2019;122:52–75. DOI: 10.1016/j.bone.2019.02.013
  17. Elazazy O, Amr K, Abd El Fattah A, et al. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch Oral Biol 2021;121:104949. DOI: 10.1016/j.archoralbio.2020.104949
  18. Greene JC, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc 1964;68:7–13. DOI: 10.14219/jada.archive.1964.0034
  19. Silness J, Loe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condtion. Acta Odontol Scand 1964;22:121–135. DOI: 10.3109/00016356408993968
  20. Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 1963;21:533–551. DOI: 10.3109/00016356309011240
  21. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol 2018;89 Suppl 1:S159–S172. DOI: 10.1002/JPER.18-0006
  22. Kern F, Aparicio-Puerta E, Li Y, et al. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res 2021;49(W1):W409–W416. DOI: 10.1093/nar/gkab297
  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25(4):402–408. DOI: 10.1006/meth.2001.1262
  24. Huang Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med 2018;22(12):5768–5775. DOI: 10.1111/jcmm.13866
  25. Luo Y, Peng X, Duan D, et al. Epigenetic regulations in the pathogenesis of periodontitis. Curr Stem Cell Res Ther 2018;13(2):144–150. DOI: 10.2174/1574888X12666170718161740
  26. Felicetti F, De Feo A, Coscia C, et al. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med 2016;14:56. DOI: 10.1186/s12967-016-0811-2
  27. Yang S, Yang Y. Downregulation of microRNA-221 decreases migration and invasion in fibroblast-like synoviocytes in rheumatoid arthritis. Mol Med Rep 2015;12(2):2395–2401. DOI: 10.3892/mmr.2015.3642
  28. Monteiro MM, Lima CR, Gomes CC, et al. Lowered expression of microRNAs 221 and 222 mediate apoptosis induced by high glucose in human periodontal ligament cells. Cell Biochem Biophys 2020;78(3):391–398. DOI: 10.1007/s12013-020-00932-3
  29. Liu X, Yang B, Zhang Y, et al. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health 2021;21(1):513. DOI: 10.1186/s12903-021-01882-9
  30. Wang M, Xu C, Wu X, et al. The expression of Runx2 in the pathogenesis of periodontitis. Oral Dis 2023; DOI: 10.1111/odi.14580
  31. Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000;101(15):1767–1772. DOI: 10.1161/01.cir.101.15.1767
  32. Komatsu Y, Tai H, Galicia JC, et al. Interleukin-6 (IL-6)–373 A9T11 allele is associated with reduced susceptibility to chronic periodontitis in Japanese subjects and decreased serum IL-6 level. Tissue Antigens 2005;65(1):110–114. DOI: 10.1111/j.1399-0039.2005.00347.x
  33. Tomofuji T, Yoneda T, Machida T, et al. MicroRNAs as serum biomarkers for periodontitis. J Clin Periodontol 2016;43(5):418–425. DOI: 10.1111/jcpe.12536
  34. Nordlund L, Hormia M, Saxén L, et al. Immunohistochemical localization of epidermal growth factor receptors in human gingival epithelia. J Periodontal Res 1991;26(4):333–338. DOI: 10.1111/j.1600-0765.1991.tb02071.x
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.