Aim: This study was performed to evaluate the effectiveness of low-intensity pulsed ultrasound (LIPUS) as an adjunct to periodontal regenerative therapy [open flap debridement (OFD) with or without bone graft (BG)] in intrabony defects of chronic periodontitis patients.
Materials and methods: A total of 40 angular periodontal defect sites were included in this study by recruiting 18 systemically healthy volunteers. Sample sites were randomly allotted to four groups: group I, OFD; group II, OFD + LIPUS; group III, OFD + BG; and group IV, OFD + BG + LIPUS. The clinical parameters such as plaque index (PI), gingival sulcus bleeding index (SBI), probing depth (PD), clinical attachment loss, radiographic depth of the defect site, and alkaline phosphatase (ALP) level in gingival crevicular fluid (GCF) were analyzed.
Results: When compared between the groups, there was no significant difference in clinical and radiographic parameters at 3 and 6 months of postevaluation, whereas ALP level showed a significant increase at 6 weeks in group II and group IV when compared to other groups.
Conclusion: It can be concluded that LIPUS did not improve periodontal regeneration in terms of clinical and radiographic parameters when used as an adjunct to periodontal regenerative therapy. But it has shown the potential to increase the ALP level in GCF.
Clinical significance: There is no added clinical benefit in the short-term usage of LIPUS in periodontal therapy.
Petersen PE, Ogawa H. Strengthening the prevention of periodontal disease: the WHO approach. J Periodontol 2005;76(12):2187–2193. DOI: 10.1902/jop.2005.76.12.2187
Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000 2012;60(1):15–39. DOI: 10.1111/j.1600-0757.2011.00425.x
Froum SJ, Weinberg MA, Rosenberg E, et al. A comparative study utilizing open flap debridement with and without enamel matrix derivative in the treatment of periodontal intrabony defects: a 12-month re-entry study. J Periodontol 2001;72(1):25–34. DOI: 10.1902/jop.2001.72.1.25
Del Fabbro M, Karanxha L, Panda S, et al. Autologous platelet concentrates for treating periodontal infrabony defects. Cochrane Database Syst Rev 2018;11(11):CD011423. DOI: 10.1002/14651858.CD011423.pub2
Panda S, Ramamoorthi S, Jayakumar ND, et al. Platelet rich fibrin and alloplast in the treatment of intrabony defect. J Pharm Bioallied Sci 2014;6(2):127–131. DOI: 10.4103/0975-7406.129178
Ravi S, Malaiappan S, Varghese S, et al. Additive effect of plasma rich in growth factors with guided tissue regeneration in treatment of intrabony defects in patients with chronic periodontitis: a split-mouth randomized controlled clinical trial. J Periodontol 2017; 88(9):839–845. DOI: 10.1902/jop.2017.160824
Jangid K, Jayakumar ND, Varghese S. Achievable therapeutic effect of Myristica Fragrans (NUTMEG) on periodontitis a short review. Int J Pharm Pharm Sci 2014;6(5):591–594.
Angle SR, Sena K, Sumner DR, et al. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 2011;51(3):281–288. DOI: 10.1016/j.ultras.2010.09.004
El-Mowafi H, Mohsen M. The effect of low-intensity pulsed ultrasound on callus maturation in tibial distraction osteogenesis. Int Orthop 2005;29(2)121–124. DOI: 10.1007/s00264-004-0625-3
Qin L, Lu H, Fok P, et al. Low-intensity pulsed ultrasound accelerates osteogenesis at bone-tendon healing junction. Ultrasound Med Biol 2006;32(12):1905–1911. DOI: 10.1016/j.ultrasmedbio.2006.06.028
Yang KH, Parvizi J, Wang SJ, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 1996;14(5):802–809. DOI: 10.1002/jor.1100140518
Franco de Oliveira R, Pires Oliveira DAA, Soares CP. Effect of low-intensity pulsed ultrasound on l929 fibroblasts. Arch Med Sci 2011;7(2):224–229. DOI: 10.5114/aoms.2011.22071
Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound. J Ultrasound Med 2003;22(2):145–153. DOI: 10.7863/jum.2003.22.2.145
Naruse K, Mikuni-Takagaki Y, Azuma Y, et al. Anabolic response of mouse bone-marrow-derived stromal cell clone st2 cells to low-intensity pulsed ultrasound. Biochem Biophys Res Commun 2000;268(1):216–220. DOI: 10.1006/bbrc.2000.2094
Erdogan O, Esen E, Ustün Y, et al. Effects of low-intensity pulsed ultrasound on healing of mandibular fractures: an experimental study in rabbits. J Oral Maxillofac Surg 2006;64(2):180–188. DOI: 10.1016/j.joms.2005.10.027
Chen YJ, Wang CJ, Yang KD, et al. Pertussis toxin-sensitive Galphai protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts. FEBS Lett 2003;554(1-2)154–158. DOI: 10.1016/s0014-5793(03)01157-8
Warden SJ, Favaloro JM, Bennell KL, et al. Low-intensity pulsed ultrasound stimulates a bone-forming response in UMR-106 cells. Biochem Biophys Res Commun 2001;286(3):443–450. DOI: 10.1006/bbrc.2001.5412
Saito M, Fujii K, Tanaka T, et al. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif Tissue Int 2004;75(5):384–395. DOI: 10.1007/s00223-004-0292-9
Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 1994;76(1):26–34. DOI: 10.2106/00004623-199401000-00004
Kristiansen TK, Ryaby JP, McCabe J, et al. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 1997;79(7):961–973. DOI: 10.2106/00004623-199707000-00002
Zura R, Della Rocca GJ, Mehta S, et al. Treatment of chronic (>1 year) fracture nonunion: heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury 2015;46(10):2036–2041. DOI: 10.1016/j.injury.2015.05.042
Ikai H, Tamura T, Watanabe T, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery. J Periodontal Res 2008;43(2):212–216. DOI: 10.1111/j.1600-0765.2007.01016.x
Inubushi T, Tanaka E, Rego EB, et al. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells. J Periodontol 2008;79(10):1984–1990. DOI: 10.1902/jop.2008.080081
Wang Y, Li J, Zhou J, et al. Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies. Ultrasonics 2022;121:106678. DOI:10.1016/j.ultras.2021.106678
Armitage GC. Development of a classification system for periodontal diseases and conditions. Northwest Dent 2000;79(6):31–35. PMID: 11413609.
Silness J, Loe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand 1964;22:121–135. DOI: 10.3109/00016356408993968
Leung KS, Lee WS, Tsui HF, et al. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 2004;30(3):389–395. DOI: 10.1016/j.ultrasmedbio.2003.11.008
Mühlemann HR, Son S. Gingival sulcus bleeding—a leading symptom in initial gingivitis. Helv Odontol Acta 1971;15(2):107–113. PMID: 5315729.
Nolte PA, van der Krans A, Patka P, et al. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 2001;51(4):693–702. DOI: 10.1097/00005373-200110000-00012
Kim SH, Hong KS. Histologic evaluation of low-intensity pulsed ultrasound effects on bone regeneration in sinus lift. J Periodontal Implant Sci 2010;40(6):271–275. DOI: 10.5051/jpis.2010.40.6.271
Uddin SMZ, Qin Y-X. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity. PLoS One 2013;8(9):e73914. DOI: 10.1371/journal.pone.0073914
Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. Biomed Res Int 2013;2013:269724. DOI: 10.1155/2013/269724
Hu B, Zhang Y, Zhou J, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One 2014;9(4):e95168. DOI: 10.1371/journal.pone.0095168
Xue H, Zheng J, Cui Z, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. PLoS One 2013;8(7):e68926. DOI: 10.1371/journal.pone.0068926
Ganzorig K, Kuroda S, Maeda Y, et al. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants. Arch Oral Biol 2015;60(6):902–910. DOI: 10.1016/j.archoralbio.2015.02.014
Bashardoust Tajali S, Houghton P, MacDermid JC, et al. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil 2012;91(4):349–367. DOI: 10.1097/PHM.0b013e31822419ba
Zura R, Mehta S, Della Rocca GJ, et al. A cohort study of 4,190 patients treated with low-intensity pulsed ultrasound (LIPUS): findings in the elderly versus all patients. BMC Musculoskeletal Disorders 2015;16:45. DOI: 10.1186/s12891-015-0498-1
Rutten S, Nolte PA, Korstjens CM, et al. Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula. Bone 2008;43:348–354. DOI: 10.1016/j.bone.2008.04.010
Daltaban O, Saygun I, Bal B, et al. Gingival crevicular fluid alkaline phosphatase levels in postmenopausal women: effects of phase I periodontal treatment. J Periodontol 2006; 77(1):67–72. DOI: 10.1902/jop.2006.77.1.67