World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 4 ( July-August, 2022 ) > List of Articles


Effect of Nanoparticle Coatings on Frictional Resistance of Orthodontic Archwires: A Systematic Review and Meta-analysis

Mathew T Maliael, Ravindra K Jain, M Srirengalakshmi

Keywords : Friction, Nanoparticles, Orthodontic archwires, Orthodontics

Citation Information : Maliael MT, Jain RK, Srirengalakshmi M. Effect of Nanoparticle Coatings on Frictional Resistance of Orthodontic Archwires: A Systematic Review and Meta-analysis. World J Dent 2022; 13 (4):417-424.

DOI: 10.5005/jp-journals-10015-2066

License: CC BY-NC 4.0

Published Online: 18-06-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: This review aims to perform a systematic evaluation of the literature and report on the effect of nanoparticle (NP) coating on frictional resistance (FR) of orthodontic archwires. Background: Frictional resistance offered by archwires and brackets during orthodontic treatment can be minimized by surface treatment, and NP coating of archwires and brackets has been reported to reduce FR. Review results: A total of ten in vitro studies were included in the qualitative analysis, and five studies were included in the quantitative analysis for this review; eight of the included articles identified a significant decrease in FR of the coated wires when compared to uncoated wires. The overall methodological quality of the included studies was moderate. There was a significant reduction in FR of NP coated SS wires (MD = −1.28N; 95% CI: −1.90, −0.67; p < 0.0001) and NiTi wires (MD = −0.19N; 95% CI: −0.28, −0.15; p < 0.00001) when compared with uncoated wires. Conclusion: Both qualitative and quantitative assessment of the available literature suggests a significant reduction in FR of orthodontic archwires subjected to NP coating. Clinical significance: Nanoparticle coating of archwires reduces FR; hence during orthodontic treatment coated archwires can be used to obtain better results.

PDF Share
  1. Nikolai RJ. Bioengineering Analysis of Orthodontic Mechanics. Philadelphia: Lea & Febiger 1985;477.
  2. Tidy DC. Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 1989;96(3):249–254. DOI: 10.1016/0889-5406(89)90462-9
  3. Rossouw PE, Emile Rossouw P. Friction: an overview. Semin Orthod 2003:218–222. DOI: 10.1016/J.SODO.2003.08.002
  4. Drescher D, Bourauel C, Schumacher H-A. Frictional forces between bracket and archwire. Am J Orthod Dentofacial Orthop 1989;96: 397–404. DOI: 10.1016/0889-5406(89)90324-7
  5. Chen WX, Tu JP, Xu ZD, et al. Wear and friction of Ni-P electroless composite coating including inorganic fullerene-WS2 nanoparticles. Adv Eng Mater 2002;4:686–690. DOI:10.1002/1527-2648%2820020916%294%3A9%3C686%3A%3AAID-ADEM686%3E3.0.CO%3B2-I
  6. Ogata RH, Nanda RS, Duncanson MG, et al. Frictional resistances in stainless steel bracket-wire combinations with effects of vertical defections. Am J Orthod Dentofacial Orthop 1996;109(5):535–542. DOI: 10.1016/s0889-5406(96)70139-7
  7. Bednar JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces between orthodontic brackets and archwires. Am J Orthod Dentofacial Orthop 1991;100(6):513–522. DOI: 10.1016/0889-5406(91)70091-a
  8. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: part II. treatment factors. Am J Orthod Dentofacial Orthop 2001;119(5):511–515. DOI: 10.1067/mod.2001.113410
  9. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: part I. diagnostic factors. Am J Orthod Dentofacial Orthop 2001;119(5):505–510. DOI: 10.1067/mod.2001.113409
  10. Sameshima GT. Clinical Management of Orthodontic Root Resorption. Nature 2020:145.
  11. Tronstad. Root resorption–etiology, terminology and clinical manifestations. Endod Dent Traumatol 1988;4(6):241–252. DOI: 10.1111/j.1600-9657.1988.tb00642.x
  12. Ireland AJ, Sherriff M, McDonald F. Effect of bracket and wire composition on frictional forces. Eur 1991;13(4):322–328. DOI: 10.1093/ejo/13.4.322
  13. Obaidi H, Al-Mukhtar A. The Frictional coefficient comparison between stainless steel and beta – titanium arch wires ligatured to the stainless steel bracket via different ligatures. Dental Journal 2008;8:79–82. DOI:10.33899/rden.2008.9050
  14. Karasawa M, Tsumura T, Fujita K, et al. Study on the frictional properties between bracket and wire by sandblast processing. Orthod Waves 2015;74:48–53. DOI: 10.1016/j.odw.2015.02.001
  15. Schumacher HA, Bourauel C, Drescher D. The influence of bracket design on frictional losses in the bracket/arch wire system. J Orofac Orthop 1999;60(5):335–347. DOI: 10.1007/BF01301246
  16. Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofacial Orthop 2009;135(4):442–447. DOI: 10.1016/j.ajodo.2008.09.023
  17. Burrow SJ. Friction and loading. Am J Orthod Dentofacial Orthop 2007;132(6):725–726. DOI: 10.1016/j.ajodo.2007.10.011
  18. Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992;360:444–446. DOI: 10.1038/360444a0
  19. Feldman Y, Wasserman E, Srolovitz DJ, et al. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995;267(5195):222–225. DOI: 10.1126/science.267.5195.222
  20. Chellapa LR, Shanmugam R, Indiran MA, et al. Biogenic nanoselenium synthesis, its antimicrobial, antioxidant activity and toxicity. Bioinspired, Biomim and Nanobiomaterials 2020;9(3):184–189. DOI: 10.1680/jbibn.19.00054
  21. Rajeshkumar S, Lakshmi T, Naik P. Chapter 18 - Recent advances and biomedical applications of zinc oxide nanoparticles. In: Shukla AK, Iravani S, editors. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier; 2019. 445–457.
  22. Chun M-J, Shim E, Kho E-H, et al. Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod 2007;77(3):483–488. DOI: 10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;2
  23. Wichelhaus A, Geserick M, Hibst R, et al. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent Mater 2005;21(10):938–945. DOI: 10.1016/
  24. Wei S, Shao T, Ding P. Study of CNx films on 316L stainless steel for orthodontic application. Diam Relat Mater 2010;19:648–653. DOI: 10.1016/j.diamond.2010.02.040
  25. William RPD, Larson B, David MS. Contemporary orthodontics. Elsevier sci 2019;6e:748.
  26. Ehsani S, Mandich M-A, El-Bialy TH, et al. Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. Syst Rev 2009;79(3):592–601. DOI: 10.2319/0003-3219(2009)079[0592:frisob];2
  27. Somya W. Effect of silver and titanium nanocoating on frictional properties of stainless steel archwire: an in vitro study. Chettinad Dental College & Research Institute, Kanchipuram; 2020.
  28. Surya RK. An in vitro study to evaluate the frictional characteristics and surface topography of two different arch wires coated with silver nano particles using passive self ligating brackets. Sree Mookambika Institute of Dental Sciences, Kulasekharam; 2018.
  29. Na L, Hai-jing Z, Bing H, et al. Friction properties of orthodontic brackets coated with TiO2-xNy. Chin J Tissue Eng Res 2014;18(47):7621. DOI:10.3969/j.issn.2095-4344.2014.47.014
  30. Karandish M, Pakshir M, Moghimi M, et al. Evaluating the mechanical properties of zinc-coated stainless steel orthodontic wires using physical vapor deposition. Int J Dent 2021:6651289. DOI: 10.1155/2021/6651289
  31. Hammad SM, El-Wassefy NA, Shamaa MS, et al. Evaluation of zinc-oxide nanocoating on the characteristics and antibacterial behavior of nickel-titanium alloy. Dental Press J Orthod 2020;25(4):51–58. DOI: 10.1590/2177-6709.25.4.051-058.oar
  32. Sharma P, Shah P, Goje S. Comparative evaluation of frictional resistance of silver-coated stainless steel wires with uncoated stainless steel wires: an in vitro study. Contemp Clin Dent 2018;9(Suppl 2):S331–S336. DOI: 10.4103/ccd.ccd_405_18
  33. Kachoei M, Eskandarinejad F, Divband B, et al. The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires. Dent Res J 2013;10(4):499–505.
  34. Kachoei M, Nourian A, Divband B, et al. Zinc-oxide nanocoating for improvement of the antibacterial and frictional behavior of nickel-titanium alloy. Nanomedicine 2016;11(19):2511–2527. DOI: 10.2217/nnm-2016-0171
  35. Redlich M, Gorodnev A, Feldman Y, et al. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires. Mater 2008;23:2909–2915. DOI: 10.1557/JMR.2008.0350
  36. Samorodnitzky-Naveh GR, Redlich M, Rapoport L, et al. Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel–titanium alloys. Nanomedicine (Lond) 2009;4(8):943–950. DOI: 10.2217/nnm.09.68
  37. Redlich M, Katz A, Rapoport L, et al. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS(2) impregnated in electroless nickel-phosphorous film. Dent Mater 2008;24(12):1640–1646. DOI: 10.1016/
  38. Behroozian A, Kachoei M, Khatamian M, et al. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets. J Dent Res Dent Clin Dent Prospects 2016;10(2):106–111. DOI: 10.15171/joddd.2016.017
  39. Kachoei M, Divband B, Eskandarinejad F, et al. Deposition of ZnO nano-particles on stainless steel orthodontic wires by chemical solution method for friction reduction propose. Res J Pharm Biol Chem Sci 2015;6(3):104–112.
  40. Elhelbawy N, Ellaithy M. Comparative evaluation of stainless-steel wires and brackets coated with nanoparticles of Chitosan or zinc oxide upon friction: an in vitro study. Int Orthod 2021;19(2):274–280. DOI: 10.1016/j.ortho.2021.01.009
  41. Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 2003;255 (7-12):785–793. DOI:10.1016/S0043-1648(03)00044-9
  42. Cizaire L, Vacher B, Le Mogne T, et al. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf Coat Technol 2002;160(2-3):282-287. DOI:10.1016/S0257-8972(02)00420-6
  43. Nanda R. Biomechanics in clinical orthodontics. W B Saunders Company 1996:332.
  44. Omana HM, Moore RN, Bagby MD. Frictional properties of metal and ceramic brackets. J Clin Orthod 1992;26(7):425–432.
  45. Gómez-Gómez SL, Sánchez-Obando N, Álvarez-Castrillón MA, et al. Comparison of frictional forces during the closure of extraction spaces in passive self-ligating brackets and conventionally ligated brackets using the finite element method. J Clin Exp Dent 2019;11(5):e439–446. DOI: 10.4317/jced.55739
  46. Monteiro MRG, Elias CN, Vilella O de V, et al. Frictional resistance of self-ligating versus conventional brackets in different bracket-archwire-angle combinations. J Appl Oral Sci 2014;22(3):228–234. DOI: 10.1590/1678-775720130665
  47. Sushanthi S. Vernonia amygdalina mediated copper nanoparticles and its characterization and antimicrobial activity - an in vitro study. Int J Dentistry Oral Sci 2021;8(7):3330–3334. DOI:10.19070/2377-8075-21000678
  48. Barma MD, Muthupandiyan I, Samuel SR, et al. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol 2021;126:105132. DOI: 10.1016/j.archoralbio.2021.105132
  49. Barma MD, Kannan SD, Indiran MA, et al. Antibacterial activity of mouthwash incorporated with silica nanoparticles against S. aureus, S. mutans, E. faecalis: an in vitro study. J Pharm Res 2020;32(16):25–33. DOI: 10.9734/jpri/2020/v32i1630646
  50. Hernández-Sierra JF, Ruiz F, Pena DCC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4(3):237–240. DOI: 10.1016/j.nano.2008.04.005
  51. Hoseinzadeh E, Alikhani M-Y, Samarghandi M-R, et al. Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria. Desalination Water Treat 2014;52(25–27):4969–4976. DOI:10.1080/19443994.2013.810356
  52. Ahamed M, Akhtar MJ, Raja M, et al. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine 2011;7(6):904–913. DOI: 10.1016/j.nano.2011.04.011
  53. Hackenberg S, Scherzed A, Gohla A, et al. Nanoparticle-induced photocatalytic head and neck squamous cell carcinoma cell death is associated with autophagy. Nanomedicine (Lond) 2014;9(1):21–33. DOI: 10.2217/nnm.13.41
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.