World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 4 ( July-August, 2022 ) > List of Articles


Periodontal In Vitro Cells Response on Zirconia Implant Surfaces Textured with Milled Machining Micropores

Mariana B da Cruz, Joana F Marques, Neusa Silva, Sara Madeira, Óscar Carvalho, Filipe S Silva, João MM Caramês, António DSP da Mata

Keywords : Conventional milling, Human fetal osteoblasts, Human gingival fibroblast, Micro-pore, Zirconia

Citation Information : da Cruz MB, Marques JF, Silva N, Madeira S, Carvalho Ó, Silva FS, Caramês JM, da Mata AD. Periodontal In Vitro Cells Response on Zirconia Implant Surfaces Textured with Milled Machining Micropores. World J Dent 2022; 13 (4):307-315.

DOI: 10.5005/jp-journals-10015-2058

License: CC BY-NC 4.0

Published Online: 18-06-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Aim: The aim of this in vitro study was to investigate the influence of milled micropores created on zirconia implant surfaces with different widths, depths, and spacing on osteoblasts and fibroblasts cells response. Materials and methods: A total of 108 zirconia disks were produced using press-and-sintering techniques and randomly assigned in five groups textured with milled micropores with different dimensions of widths, depths, and spacings. All samples including control samples were sandblasted and acid-etched (SBAE). Fibroblasts and osteoblasts were cultured on disks for up to 14 days. Morphology and cellular adhesion were observed using scanning electron microscopy (SEM). Cell viability and proliferation were assessed using CellTiter-Blue® reagent and the alkaline phosphatase (ALP) activity was evaluated using a fluorometric enzyme assay. The levels of interleukin-1β, collagen type I, interleukin-8, and osteopontin were assessed using an appropriate enzyme-linked immunosorbent assay (ELISA) kit. The data was subject to statistical analysis performed using the IBM® SPSS® 24.0 software for Mac (SPSS, Chicago, USA). Group comparisons were tested using two-way ANOVA or Mann-Whitney U test with Tukey's multiple comparisons (Tukey's post hoc). Results were presented as mean ± standard deviation and the significance level was set at p < 0.05. Results: Cell viability and proliferation increase over time in all groups, in both cell lines, without significant differences between them. SEM images reveal adherent cells after 1 day of culture. The production of interleukin-1β, collagen type I, interleukin-8, and osteopontin did not show statistically significant differences, as well as the ALP activity when all groups were compared. Conclusion: Milled micro-pore dimensions between 10 μm and 100 μm on Zirconia implant surfaces with different widths, depths, and spacings did not improve periodontal cells behavior in SBAE surfaces. Clinical significance: The production of milled micro-pore modified Zirconia implant surfaces may help us to improve their clinical behavior.

  1. da Cruz MB, Marques JF, Fernandes BF, et al. Gingival fibroblasts behavior on bioactive zirconia and titanium dental implant surfaces produced by a functionally graded technique. J Appl Oral Sci 2020;28:e20200100. DOI: 10.1590/1678-7757-2020-0100
  2. Delgado-Ruíz RA, Moreno GG, Aguilar-Salvatierra A, et al. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. an experimental in vitro study. Clin Oral Implants Res 2015;27(11):e144–e153. DOI: 10.1111/clr.12585
  3. Jiang X, Yao Y, Tang W, et al. Design of dental implants at materials level: an overview. J Biomed Mater Res A 2020;108(8):1634–1661. DOI: 10.1002/jbm.a.36931
  4. Fernandes BF, Cruz MB, Marques JF, et al. Laser Nd:YAG patterning enhance human osteoblast behavior on zirconia implants. Lasers Med Sci 2020;35(9):2039–2048. DOI: 10.1007/s10103-020-03066-3
  5. Sun Y, Sun J, Wu X, et al. Mechanism of zirconia microgroove surface structure for osseointegration. Materials Today Advance 2021;12:100159. DOI: 10.1016/j.mtadv.2021.100159
  6. Schunemann FH, Galárraga-Vinueza ME, Magini R, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C Mater Biol Appl 2019;98:1294–1305 DOI: 10.1016/j.msec.2019.01.062
  7. Guéhennec LL, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23(7):844–854. DOI: 10.1016/
  8. Sun L, Hong G. Surface modifications for zirconia dental implants:a review. Front Dent Med 2021;2:733242. DOI: 10.3389/fdmed.2021.733242
  9. Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. Biomed Res Int 2017;2017:9246721. DOI: 10.1155/2017/9246721
  10. Pellegrini G, Francetti L, Barbaro B, et al. Novel surfaces and osseointegration in implant dentistry. J Investig Clin Dent 2018; 9(4):e12349. DOI: 10.1111/jicd.12349
  11. Babík O, Czán A, Holubjak J, et al. Identification of surface characteristics created by miniature machining of dental implants made of titanium based materials. Procedia Engineering 2017;192:1016–1021. DOI: 10.1016/j.proeng.2017.06.175
  12. Holthaus MG, Stolle J, Treccani L, et al. Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater 2012;8(1):394–403. DOI: 10.1016/j.actbio.2011.07.031
  13. Velasco-Ortega E, Ortiz-Garcia I, Jiménez-Guerra A, et al. Osseointegration of sandblasted and acid-etched implant surfaces. a histological and histomorphometric study in the rabbit. Int J Mol Sci 2021;22(16):8507. DOI: 10.3390/ijms22168507
  14. Velasco-Ortega E, Ortiz-García I, Jiménez-Guerra A, et al. Comparison between sandblasted acid-etched and oxidized titanium dental implants: in vivo study. Int J Mol Sci 2019;20(13):3267. DOI: 10.3390/ijms20133267
  15. Wang Q, Zhou P, Liu S, et al. Multi-scale surface treatment of titanium implants for rapid osseointegration: a review. Nanomaterials (Basel) 2002;10(6):1244. DOI: 10.3390/nano10061244
  16. Ramaglia L, Postiglione L, Di Spigna G, et al. Sandblasted-acid-etched titanium surface influences in vitro the biological behavior of SaOS-2 human osteoblast-like cells. Dent Mater J 2011;30(2):183–192. DOI: 10.4012/dmj.2010-107
  17. Murphy CM, Huagh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen- glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3):461–466. DOI: 10.1016/j.biomaterials.2009.09.063
  18. Zirak M, Vojdani M, Khaledi AAR, et al. Tensile bond strength of three custom-made tooth-colored implant superstructures to titanium inserts. J Dent (Shiraz) 2019;20(2):131–136. DOI: 10.30476/DENTJODS.2019.44924
  19. Torres-Sanchez C, Norrito M, Almushref FR, et al. The impact of multimodal pore size considered independetly from porosity on mechanical performance and osteogenic behavior of titanium scaffolds. Mater Sci Eng C Mater Biol Appl 2021;124:112026. DOI: 10.1016/j.msec.2021.112026
  20. Stangl R, Rinne B, Kastl S, et al. The influence of pore geometry in cp ti-implants – a cell culture investigation. Eur Cell Mater 2001;2:1–9. DOI: 10.22203/ecm.v002a01
  21. Yin L, Nakanishi Y, Alao AR, et al. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP 2017;65:284–290. DOI: 10.1016/j.procir.2017.04.057
  22. Kanchana S, Hussain S. Zirconia a bio-inert implant material. IOSR J Dent Med Sci 2013;12(6):66–67. DOI: L01266667.pdf?id=8945
  23. Brunette DM. Spreading and orientation of epithelial cells on grooved substrata. Exp Cell Res 1986;167(1):203–217. DOI: 10.1016/0014-4827(86)90217-x
  24. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84(5):522–534. DOI: 10.1067/mpr.2000.111966
  25. Rompen E, Domken O, Degidi M, et al. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res 2006;17 Suppl 2:55–67. DOI: 10.1111/j.1600-0501.2006.01367.x
  26. Aboushelib MN, Osman E, Jansen I, et al. Influence of a nanoporous zirconia implant surface of on cell viability of human osteoblasts. J Prosthodont 2013;22(3):190–195. DOI: 10.1111/j.1532-849x. 2012.00920.x
  27. Yang S, Yu S, He C. The surface integrity of titanium alloy when using micro-textured ball-end milling cutters. Micromachines (Basel) 2019;10(1):21. DOI: 10.3390/mi10010021
  28. Wu DX, Yao CF, Tan L, et al. Experimental study on surface integrity in high-speed end milling of titanium alloy TB6. App Mech Mater 2013; 328: 867–871. DOI: 10.4028/
  29. Ahmed WM, Troczynski T, Stojkova BJ, et al. Dimensional changes of yttria-stabilized zirconia under different preparation desingns and sintering protocols. J Prosthodont 2020;29(8):699–706. DOI: 10.1111/jopr.13170
  30. von Wilmowsky C, Moest T, Nkenke E, et al. Implants in bone: part I. a current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 2014;18(3):243–257. DOI: 10.1007/s10006-013-0398-1
  31. Abushahba F, Tuukkanen J, Aalto-Setala L, et al. Effect of bioactive glass air-abrasion on the wettability and osteoblast proliferation on sandblasted and acid-etched titanium surfaces. Eur J Oral Sci 2020;128(2):160–169. DOI: 10.1111/eos.12683
  32. Teixeira LN, Crippa GE, Lefebvre LP, et al. The influence of pore size on osteolbast phenotype expression incultures grown on porous titanium. Int J Oral Maxillofac Surg 2012;41(9):1097–1101. DOI: 10.1016/j.ijom.2012.02.020
  33. Wehner C, Lettner S, Mortiz A, et al. Effect of bishophonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis. BCM Oral Health 2020;20(1):125. DOI: 10.1186/s12903-020-01089-4
  34. Carvalho MS, Cabral JMS, da Silva CL, et al. Bone matrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polymers (Basel) 2021; 13(7):1095. DOI: 10.3390/polym13071095
  35. Wo J, Huang SS, Wu DY, et al. The integration of pore size and porosity distribution on TI-6AI-4V scaffolds by 3D printing in the modulation of osteo-differentation. J Appl Biomater Funct Mater 2020; 18:2280800020934652. DOI: 10.1177/2280800020934652
  36. Pivodova V, Frankova J, Ulrichova J. Osteoblast and gingival fibroblast markers in dental implant studies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011;155(5):109–116. DOI: 10.5507/bp.2011.021
  37. Barbeck M, Schroder ML, Alkildani S, et al. Eploring the biomaterial induced secretome: physical Bone substitute characteriatics influence the cytokine expression of macrophages. Int J Mol Sci 2011;22(9):4442. DOI: 10.3390/ijms22094442
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.