Citation Information :
Sarode G, Ghone U, Dhirawani P, Manohar M, Sarode S, Sengupta N, Sudrania S. Venoms and Oral Cancer: A Mini-review. World J Dent 2022; 13 (3):294-299.
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies in the world. The commonly employed treatment plan for OSCC is surgery followed by radiotherapy or chemotherapy or both. These conventional therapies are widely accepted but they have certain side effects and perilous consequences. The main drawback of these treatment regimes is nonspecific cell death. Recent advances in oral cancer therapies have shown that some natural compounds, especially animal venoms, offer potentially effective anticancer and cancer-preventive properties. To overcome the harmful effects of conventional therapies, these natural products can be considered as promising safe substitutes for the currently used regimes. This article discusses various potential bioactive animal venoms studied for OSCC therapy. Further extensive research in this field will open new gateways in OSCC therapeutic options.
Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, et al. The Global Burden of Cancer 2013. JAMA Oncol 2015;1(4):505–727. DOI: 10.1001/jamaoncol.2015.0735. Erratum in: 2015;1(5):690.
Ghantous Y, Abu Elnaaj I. Global incidence and risk factors of oral cancer. Harefuah 2017;156(10):645–649. PMID- 29072384.
Gharat SA, Momin M, Bhavsar C. Oral squamous cell carcinoma: current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit Rev Ther Drug Carrier Syst 2016;33(4):363–400. DOI: 10.1615/CritRevTherDrugCarrierSyst.2016016272
Bishayee A, Sethi G. Bioactive natural products in cancer prevention and therapy: progress and promise. Semin Cancer Biol 2016;40–41: 1–3. DOI: 10.1016/j.semcancer.2016.08.006
Wu JJ, Dai L, Lan ZD, et al. The gene cloning and sequencing of Bm-12, a chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. Toxicon 2000;38(5):661–668. DOI: 10.1016/s0041-0101(99)00181-6
Liu DY, Yu CL, Liu QH. Development and the utilization of the biotoxins. Beijing: Chemical Industry Press; 2007.
de la Vega RCR, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005;46(8):831–844. DOI: 10.1016/j.toxicon.2005.09.006
Dubovskii PV, Vassilevski AA, Kozlov SA, et al. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015;72(23):4501–4522. DOI: 10.1007/s00018-015-2016-x
Satitmanwiwat S, Changsangfa C, Khanuengthong A, et al. The scorpion venom peptide bmkn2 induces apoptosis in cancerous but not in normal human oral cells. Biomed Pharmacother 2016;84:1042–1050. DOI: 10.1016/j.biopha.2016.10.041
Srairi-Abid N, Othman H, Aissaoui D, et al. Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019;80:160–174. DOI: 10.1016/j.ceca.2019.05.003
Baik FM, Hansen S, Knoblaugh SE, et al. Fluorescence identification of head and neck squamous cell carcinoma and high-risk oral dysplasia with BLZ-100, a chlorotoxin-indocyanine green conjugate. JAMA Otolaryngol Head Neck Surg 2016;142(4):330–338. DOI: 10.1001/jamaoto.2015.3617
Ahmadi S, Knerr JM, Argemi L, et al. Scorpion venom: detriments and benefits. Biomedicines 2020;8(5):118. DOI: 10.3390/biomedicines8050118
Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop 2015;48(6):642–649. DOI: 10.1590/0037-8682-0237-2015
Pucca MB, Cerni FA. Pinheiro Junior EL, et al. Tityus serrulatus venom - a lethal cocktail. Toxicon 2015;108:272–284. DOI: 10.1016/j.toxicon.2015.10.015
Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry 1998;48(1):1–29. DOI: 10.1016/s0031-9422(97)00426-3
Qiao L, Huang YF, Cao JQ, et al. One new bufadienolide from Chinese drug ‘Chan’Su’. J Asian Nat Prod Res 2008;10(3-4):233–237. DOI: 10.1080/10286020701603146
Li J, Ma X, Li F, et al. Preparative separation and purification of bufadienolides from Chinese traditional medicine of chansu using high-speed counter-current chromatography. J Sep Sci 2010;33(9):1325–1330. DOI: 10.1002/jssc.200900782
Zhang DM, Liu JS, Deng LJ, et al. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mtor pathway. Carcinogenesis 2013;34(6):1331–1342. DOI: 10.1093/carcin/bgt060
Tian X, Dai S, Sun J, et al. Bufalin induces mitochondria-dependent apoptosis in pancreatic and oral cancer cells by downregulating htert expression via activation of the JNK/p38 pathway. Evid Based Complement Alternat Med 2015;2015:546210. DOI: 10.1155/2015/546210
Chou HY, Chueh FS, Ma YS, et al. Bufalin induced apoptosis in SCC–4 human tongue cancer cells by decreasing Bcl–2 and increasing Bax expression via the mitochondria–dependent pathway. Mol Med Rep 2017;16(6):7959–7966. DOI: 10.3892/mmr.2017.7651
Jiang L, Zhao MN, Liu TY, et al. Bufalin induces cell cycle arrest and apoptosis in gallbladder carcinoma cells. Tumour Biol 2014;35(11):10931–10941. DOI: 10.1007/s13277-014-1911-3
Zhang DM, Liu JS, Tang MK, et al. Bufotalin from venenumbufonis inhibits growth of multidrug resistant hepg2 cells through G2/M cell cycle arrest and apoptosis. Eur J Pharmacol 2012;692(1-3):19–28. DOI: 10.1016/j.ejphar.2012.06.045
Wu SH, Bau DT, Hsiao YT, et al. Bufalin induces apoptosis in vitro and has Antitumor activity against human lung cancer xenografts in vivo. Environ Toxicol 2017;32(4):1305–1317. DOI: 10.1002/tox.22325
Yin PH, Liu X, Qiu YY, et al. Anti-tumor activity and apoptosis-regulation mechanisms of bufalin in various cancers: new hope for cancer patients. Asian Pac J Cancer Prev 2012;13(11):5339–5343. DOI: 10.7314/apjcp.2012.13.11.5339
Zhao H, Zhao D, Tan G, et al. Bufalin promotes apoptosis of gastric cancer by down-regulation of mir-298 targeting bax. Int J Clin Exp Med 2015;8(3):3420–3428. PMID: 26064232; PMCID: PMC4443066.
Tsai S, Lu C, Lee C, et al. AKT serine/threonine protein kinase modulates bufalin-triggered intrinsic pathway of apoptosis in CAL 27 human oral cancer cells. Int J Oncol 2012;41(5):1683–1692. DOI: 10.3892/ijo.2012.1605
Yang Q, Zhou X, Zhang M, et al. Angel of human health: current research updates in toad medicine. Am J Transl Res 2015:7(1):1–14. PMID: 25755824; PMCID: PMC4346519.
Deng LP, Dong J, Cai H, et al. Cantharidin as an antitumor agent: A retrospective review. Curr Med Chem 2013;20(2):159–166. [crossref] [pubmed] ) DOI:10.2174/092986713804806711
Torbeck R. Pan M, Demoll E, et al. Cantharidin: a comprehensive review of the clinical literature. Derm Online J 2014;20(6):13030/qt45r512w0. Available online:https://escholarship.org/uc/item/45r512w0 (accessed on 14 July 2020).
Wang G, Dong J, Deng L. Overview of Cantharidin and its analogues. Curr Med Chem 2018;25(17):2034–2044. DOI:10.2174/0929867324666170414165253
Wang GS. Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 1989;26(2):147–162. DOI: 10.1016/0378-8741(89)90062-7
Kok SH, Cheng SJ, Hong CY, et al. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett 2005;217(1):43–52. DOI: 10.1016/j.canlet.2004.07.045
Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010;92(2):151–183. DOI: 10.1016/j.pneurobio.2010.06.006
Moga MA, Dimienescu OG, Arvătescu CA, et al. Anticancer activity of toxins from bee and snake venom- an overview on ovarian cancer. Molecules 2018;23(3):692. DOI: 10.3390/molecules23030692
Wehbe R, Frangieh J, Rima M, et al. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules 2019;24(16):2997. DOI: 10.3390/molecules24162997
Park JH, Yim BK, Lee JH, et al. Risk associated with bee venom therapy: a systematic review and meta-analysis. PLoS One 2015;10(5):e0126971. DOI: 10.1371/journal.pone.0126971
Santos MMDV, Santana CD, Giglio JR, et al. Antitumoural effect of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Basic Clin Phramacol Toxicol 2008;102(6):533–542. DOI: 10.1111/j.1742-7843.2008.00229.x
Dewys WD, Kwaan HC, Bathina S. Effect of defibrination on tumor growth and response to chemotherapy. Cancer Res 1976;36(10):3584–3587. PMID: 953985
Chien CM, Chang SY, Lin KL, et al. Taiwan cobra cardiotoxin III inhibits Src kinase leading to apoptosis and cell cycle arrest of oral squamous cell carcinoma Ca9–22 cells. Toxicon 2010;56(4):508–520. DOI: 10.1016/j.toxicon.2010.05.007
Chai L, Huang T, Wang Z, et al. AAVC-I promotes apoptosis of human oral squamous cell carcinoma through the mitochondrial pathway. Int J Clin Exp Pathol 2019;12(10):3968–3974. PMID: 31933792; PMCID: PMC6949759.
Saez NJ, Senff S, Jensen JE, et al. Spider-venom peptides as therapeutics. Toxins (Basel) 2010;2(12):2851–2871. DOI: 10.3390/toxins2122851
Bordon KCF, Cologna CT, Fornari-Baldo EC, et al. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol 2020;11:1132. DOI: 10.3389/fphar.2020.01132. PMID: 32848750; PMCID: PMC7396678.
Ali MAAM. Studies on bee venom and its medical uses. Int J Adv Res Technol 2012;1(2):69–83.
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011;11(11):1469–1484. DOI:10.1517/14712598.2011.621940
Nunes KP, Costa-Goncalves A, Lanza LF, et al. Tx2–6 toxin of the Phoneutria nigriventer spider potentiates rat erectile function. Toxicon 2008;51(7):1197–1206. DOI:10.1016/j.toxicon.2008.02.010
De Oliveira-Mendes BBR, Horta CCR, do Carmo AO, et al.CPP-Ts: a new intracellular calcium channel modulator and a promising tool for drug delivery in cancer cells. Sci Rep 2018;8(1):14739. DOI: 10.1038/s41598-018-33133-3
Siu D. Natural products and their role in cancer therapy. Med Oncol 2011;28(3):888–900. DOI: 10.1007/s12032-010-9528-x