World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 2 ( March-April, 2022 ) > List of Articles

ORIGINAL RESEARCH

An In Vitro Evaluation of Antibacterial and Smear Layer Removal Efficacy of Silver Nanoparticles as Final Irrigant against Enterococcus Faecalis

Reshma Rajasekhar, Baby James, Aravindan Devadathan, Varsha M Sebastian, Midhula Sathyan

Keywords : Confocal laser scanning microscopy, Enterococcus faecalis, EDTA, Nanoparticles, Scanning electron microscopy, Sodium hypochlorite

Citation Information : Rajasekhar R, James B, Devadathan A, Sebastian VM, Sathyan M. An In Vitro Evaluation of Antibacterial and Smear Layer Removal Efficacy of Silver Nanoparticles as Final Irrigant against Enterococcus Faecalis. World J Dent 2022; 13 (2):148-154.

DOI: 10.5005/jp-journals-10015-1913

License: CC BY-NC 4.0

Published Online: 31-01-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim and objective: The aim and objective of this study is to assess the antibacterial and smear layer removal efficacy of silver nanoparticles as final irrigant against Enterococcus faecalis (E. faecalis) using confocal laser scanning and scanning electron microscope, respectively. Materials and methods: Forty single-rooted mandibular premolar teeth were instrumented till Protaper Gold F3 after decoronation. E. faecalis were inoculated in all samples and they were divided into five groups based on the irrigant used into group A= silver nanoparticle (AgNp), group B= AgNp + 17% ethylenediamine tetraacetic acid (EDTA), group C= 5.25% sodium hypochlorite (NaOCl), group D= NaOCl 5.25% +17% EDTA, group E= Distilled water. After irrigation roots were split longitudinally and assessed for confocal and SEM. Results: Groups C and D showed the greatest reduction in the percentage of live bacteria with no significant difference between them. Groups A and B has shown reduction in live bacterial percentage but not greater than groups C and D. Group E showed the greatest percentage of live bacteria. In smear layer analysis, greatest amount of smear layer was found in groups C and E in the coronal, middle, and apical third with no significant difference between them. However, greater smear layer reduction was seen in groups B and D. Group A has shown reduction in smear layer score which is greater than group C with significant difference between them. Conclusion: Irrigation with NaOCl (group C), NaOCl + 17% EDTA (group D) showed greatest reduction in live bacteria followed by AgNp +17% EDTA (Group B) and AgNp (group A) whereas greater smear layer removal is seen with irrigation with AgNp + 17%EDTA (group B) and NaOCl +17% EDTA (group D) followed by AgNp (group A), NaOCl (group C). Clinical significance: Based on the results from this study, AgNp irrigant has some antibacterial and smear layer removal capability. This study shows the possible potential of using nanoparticles as a single irrigant which can have dual action of antibacterial and smear layer removal efficacy.


HTML PDF Share
  1. Zhao D, Shen Y, Peng B, et al. Root canal preparation of mandibular molars with 3 nickel-titanium rotary instruments: a micro–computed tomographic study. J Endod 2014;40(11):1860–1864. DOI: 10.1016/j.joen.2014.06.023
  2. Haapasalo M, Endal U, Zandi H, et al. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top 2005;10(1):77–102. DOI: 10.1111/j.1601-1546.2005.00135.x
  3. Gomes-Filho JE, Silva FO, Watanabe S, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod 2010;36(10):1698–1702. DOI: 10.1016/j.joen.2010.07.007
  4. Stuart CH, Schwartz SA, Beeson TJ, et al. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32(2):93–98. DOI: 10.1016/j.joen.2005.10.049
  5. Saito K, Webb TD, Imamura GM, et al. Effect of shortened irrigation times with 17% ethylene diamine tetra-acetic acid on smear layer removal after rotary canal instrumentation. J Endod 2008;34:1011–1014. DOI: 10.1016/j.joen.2008.05.014
  6. Rôças IN, Siqueira Jr JF, Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod 2004; 30(5):315–320. DOI: 10.1097/00004770-200405000-00004
  7. Evans M, Davies JK, Sundqvist G, et al. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J 2002;35(3):221–228. DOI: 10.1046/j.1365-2591.2002.00504.x
  8. Distel JW, Hatton JF, Gillespie MJ. Biofilm formation in medicated root canals. J Endod 2002;28(10):689–693. DOI: 10.1097/00004770-200210000-00003
  9. Senia ES, Marshall FJ, Rosen S. The solvent action of sodium hypochlorite on pulp tissue of extracted teeth. Oral Surg Oral Med Oral Pathol 1971;31(1):96–103. DOI: 10.1016/0030-4220(71)90040-5
  10. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod 2016;42(10):1417–1426. DOI: 10.1016/j.joen.2016.05.021
  11. Kishen A. Nanotechnology In Endodontics. Springer International Pu; 2016.
  12. Ibrahim AIO, Moodley DS, Petrik L, et al. Use of antibacterial nanoparticles in Endodontics. South Afr Dent J 2017;72(3):105–112.
  13. Rai MK, Deshmukh SD, Ingle AP, et al. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012;112(5):841–852. DOI: 10.1111/j.1365-2672.2012.05253.x
  14. Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles Nanomedicine 2007;3(1):95–101. DOI: 10.1016/j.nano.2006.12.001
  15. Torabinejad M, Khademi AA, Babagoli J, et al. A new solution for the removal of the smear layer J Endod 2003;29(3):170–175. DOI: 10.1097/00004770-200303000-00002
  16. Zoletti GO, Siqueira Jr JF, Santos KRN. Identification of Enterococcus faecalis in root-filled teeth with or without periradicular lesions by culture-dependent and—independent approaches. J Endod 2006; 32(8):722–726. DOI: 10.1016/j.joen.2006.02.001
  17. Hancock III HH, Sigurdsson A, Trope M, et al. Bacteria isolated after unsuccessful endodontic treatment in a North American population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91(5):579–586. DOI: 10.1067/moe.2001.113587
  18. Siqueira JF, Rôças IN, Ricucci D. Biofilms in endodontic infection. Endodontic Topics 2012;22(1):33–49. DOI: 10.1111/j.1601-1546. 2012.00279.x
  19. Ingle JI, Baumgartner JC. Ingle's endodontics. PMPH-USA; 2008.
  20. Neelakantan P, Romero M, Vera J, et al. Biofilms in endodontics—current status and future directions. Int J Mol Sci 2017;18(8):174. DOI:10.3390/ijms18081748
  21. Gomes B, Ferraz CCR, Vianna ME, et al. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J 2001;34(6):424–428. DOI: 10.1046/j.1365-2591.2001.00410.x
  22. Haapasalo HK, Sirén EK, Waltimo TMT, et al. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J 2000;33(2):126–131. DOI: 10.1046/j.1365-2591.2000.00291.x
  23. Gomes BPFA, Souza SFC, Ferraz CCR, et al. Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 2003;36(4):267–275. DOI: 10.1046/j.1365-2591.2003.00634.x
  24. Mohammadi Z, Shalavi S. Effect of hydroxyapatite and bovine serum albumin on the antibacterial activity of MTA. Iran Endod J 2011;6(4):136–139. PMID -23130067.
  25. Rosen E, Tsesis I, Elbahary S, et al. Eradication of enterococcus faecalis biofilms on human dentin. Front Microbiol 2016;7:2055. DOI: 10.3389/fmicb.2016.02055
  26. Lok C-N, Ho C-M, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 2007;12(4):527–534. DOI: 10.1007/s00775-007-0208-z
  27. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 2012;8(1):37–45. DOI: 10.1016/j.nano. 2011.05.007
  28. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16(10):2346. DOI: 10.1088/0957-4484/16/10/059
  29. Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 2010;12(5):1531–1551. DOI: 10.1007/s11051-010-9900-y
  30. AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2008;3(2):279–90. 10.1021/nn800596w
  31. Zhuang P, Gao Y, Ling J, et al. Bactericidal effect of nano-silver against E. faecalis biofilm on dentin. Chin J Stomatol Res Electron Ed 2011;5:463–469.
  32. González-Luna IV P, Martínez-Castañón G-A, Zavala-Alonso N-V, et al. Bactericide effect of silver nanoparticles as a final irrigation agent in endodontics on Enterococcus faecalis: an ex vivo study. J Nanomater 2016;2016. DOI: 10.1155/2016/7597295
  33. Hou X, Fu H, Han Y, et al. Analysis of transcriptome in Enterococcus faecalis treated with silver nanoparticles. J Nanosci Nanotechnol 2020;20(2):1046–1055. DOI: 10.1166/jnn.2020.16940
  34. Martinez-Andrade JM, Avalos-Borja M, Vilchis-Nestor AR, et al. Dual function of EDTA with silver nanoparticles for root canal treatment–A novel modification. PloS One 2018;13(1):e0190866. DOI: 10.1371/journal.pone.0190866
  35. Rodrigues CT, de Andrade FB, de Vasconcelos L, et al. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J 2018; 51(8):901–911. DOI: 10.1111/iej.12904
  36. Balto H, Bukhary S, Al-Omran O, et al. Combined effect of a mixture of silver nanoparticles and calcium hydroxide against Enterococcus faecalis biofilm. J Endod 2020; 46(11):1689–1694. DOI: 10.1016/j.joen.2020.07.001
  37. Wu D, Fan W, Kishen A, et al. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod 2014;40(2):285–290. DOI: 10.1016/j.joen.2013.08.022
  38. Kishen A, Shi Z, Shrestha A, et al. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection J Endod 2008;34(12):1515–1520. DOI: 10.1016/j.joen.2008.08.035
  39. Shrestha A, Zhilong S, Gee NK, et al. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod 2010;36(6):1030–1035. DOI: 10.1016/j.joen.2010.02.008
  40. Gomes-FilHo JE, Silva FO, Watanabe S, et al. Evaluation of silver nanoparticles as irrigating solution. Dent Press Endod 2013;3(2):16–23.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.