World Journal of Dentistry

Register      Login

VOLUME 13 , ISSUE 2 ( March-April, 2022 ) > List of Articles

ORIGINAL RESEARCH

Evaluation of Cytocompatibility of Thermopolymerized Denture Base Copolymer Containing a Novel Ring-opening Oxaspiro Comonomer

Ramajayam Sasikala, Jayaraman Raghunathan, Vellingiri LalithaManohari, Kandasamy Baburajan

Keywords : Cell viability, Copolymer, Cytocompatibility, Cytotoxicity, Ring-opening

Citation Information : Sasikala R, Raghunathan J, LalithaManohari V, Baburajan K. Evaluation of Cytocompatibility of Thermopolymerized Denture Base Copolymer Containing a Novel Ring-opening Oxaspiro Comonomer. World J Dent 2022; 13 (2):127-132.

DOI: 10.5005/jp-journals-10015-1901

License: CC BY-NC 4.0

Published Online: 31-01-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Aim and objective: To evaluate the cytocompatibility of a novel denture base copolymer processed with 3,9-dimethylene-1,5,7,11- tetraoxaspiro[5,5]undecane (DMTOSU) comonomer using human keratinocytes (HKCs) and gingival fibroblasts (HGFs) by tetrazolium assay. Materials and methods: The specimens were grouped based on the composition of the resultant polymer and curing regimen employed. Nine disk-shaped specimens per group were polymerized by one of the following curing regimens. GCW: plain poly (methyl methacrylate) [P(MMA)] polymerized by short curing cycle in water-bath without DMTOSU; GTW: P(MMA-Co-DMTOSU)W copolymer polymerized with 20 wt% DMTOSU at 70°C for 2 h followed by short curing cycle in water bath; GTA: P(MMA-Co-DMTOSU)A copolymer polymerized with 20 wt% DMTOSU at 60°C for 45 min followed by 130°C for 20 min in an autoclave. Human keratinocytes and HGFs were employed to evaluate cell viability (CV%) by elution method through tetrazolium assay. Results: A statistically significant difference was obtained (p < 0.05) among the groups with both the cell types. The ascending order of cytocompatibility is GCW < GTW < GTA with the CV% > 70%. Conclusion: The novel P(MMA-Co-DMTOSU) denture copolymer is found to be more cytocompatible with HKC and HGF than the P(MMA). Clinical significance: The novel P(MMA-Co-DMTOSU) denture base copolymer cytocompatible to HKCs and HGFs might bypass polymerization shrinkage and food accumulation at denture–tissue interface. Therefore, this copolymer is also anticipated to prevent oral malodor and stomatitis due to good tissue adaptability and dimensional accuracy.


HTML PDF Share
  1. Keyf FA, Keyf AI. Harmful effects of methylmethacrylate and formaldehyde from acrylic resin denture basematerials. Saudi Dent J 1998;10(1):25–28. Corpus ID: 137858628.
  2. Kanerva L, Henriks-Eckerman ML, et al. Occupational allergic contact dermatitis and composition of acrylates in dentin bonding systems. J Eur Acad Dermatol Venerol 1994;3:157–168. DOI: 10.1111/j.1468-3083.1994.tb00091.x
  3. Enoch SJ, Roberts DW, Cronin MTD. Electrophilic reaction chemistry of low molecular weight respiratory sensitizers. Chem Res Toxicol 2009;22:1447–1453. DOI: 10.1021/tx9001463
  4. Bohling HG, Borchard U, Drouin H. Monomeric methylmethacrylate (MMA) acts on the desheathed myelinated nerve and on the node of Ranvier. Arch Toxicol 1977;38(4):307–314. DOI: 10.1007/BF00352035
  5. Seppalainen AM, Rajaniemi R. Local neurotoxicity of methyl methacrylate among dental technicians. Am J Ind Med 1984; 5(6): 471–477. DOI: 10.1002/ajim.4700050606
  6. Donaghy M, Rushworth G, Jacobs JM. Generalized peripheral neuropathy in a dental technician exposed to methyl methacrylate monomer. Neurology 1991;41(7):1112–1116. DOI: 10.1212/wnl.41.7.1112
  7. Lonnroth E-C, Wellendorf H, Ruyter IE. Permeability of different types of medical protective gloves to acrylic monomers. Eur J Oral Sci 2003;111:440–446. DOI: 10.1034/j.1600-0722.2003.00064.x
  8. Gautam R, Singh RD, Sharma VP, et al. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater 2012;100B:1444–1450. DOI: 10.1002/jbm.b.32673
  9. Savonius B, Keskinen H, Tuppurainen M, et al. Occupational respiratory disease caused by acrylates. Clin Exp Allergy 1993;23:416–424. DOI: 10.1111/j.1365-2222.1993.tb00348.x
  10. Lyapina M, Dencheva M, Krasteva A, et al. Concomitant contact allergy to formaldehyde and methacrylic monomers in students of dental medicine and dental patients. Int J Occup Med Environ Health 2014;27(5):797–807. DOI: 10.2478/s13382-014-0314-4
  11. Hensten-Pettersen A. Skin and mucosal reactions associated with dental materials. Eur J Oral Sci 1998;106:707–712. DOI: 10.1046/j.0909-8836.1998.eos10602ii08.x
  12. Ortengren U, Andreasson H, Karlsson S, et al. Prevalence of self-reported hand eczema and skin symptoms associated with dental materials among Swedish dentists. Eur J Oral Sci 1999;107(6):496–505. DOI: 10.1046/j.0909-8836.1999.eos107612.x
  13. Ruyter IF. Release of formaldehyde from denture base polymers. Acta Odontal Scand 1980;38(1):17–27. DOI: 10.3109/00016358008997715
  14. Tsuchiya H, Hoshino Y, Kato H, et al. Flow injection analysis of formaldehyde leached from denture-base acrylic resins. J Dent 1993;21:240–243. DOI: 10.1016/0300-5712(93)90136-e
  15. Mikai M, Fujii H. Quantitative analysis of allergenic ingredients in eluate extracted from used denture base resin. J Oral Rehabil 2006;33(3):216–220. DOI: 10.1111/j.1365-2842.2005.01561.x
  16. Ajay R, Suma K, SreeVarun M, et al. Evaluation of in vitro cytotoxicity of heat-cure denture base resin processed with a dual-reactive cycloaliphatic monomer. J Contemp Dent Pract 2019;20(11):1279–1285. DOI: 10.5005/jp-journals-10024-2688
  17. Bayraktar G, Guvener B, Bural C, et al. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J Biomed Mater Res B Appl Biomater 2006;76(2):340–345. DOI: 10.1002/jbm.b.30377
  18. Celebi N, Yuzugullu B, Canay S, et al. Effect of polymerization methods on the residual monomer level of acrylic resin denture base polymers. Polym Adv Technol 2008;19:201–206. DOI: 10.1002/pat.996
  19. Bartoloni JA, Murchison DF, Wofford DT, et al. Degree of conversion in denture base materials for varied polymerization techniques. J Oral Rehabil 2000;27(6):488–493. DOI: 10.1046/j.1365-2842.2000.00536.x
  20. Azzarri MJ, Cortizo MS, Alessandrini JL. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerised. J Dent 2003;31(7):463–468. DOI: 10.1016/s0300-5712(03)00090-3
  21. Bettencourt AF, Neves CB, de Almeida MS, et al. Biodegradation of acrylic based resins: a review. Dent Mater 2010;26(5):e171–e180. DOI: 10.1016/j.dental.2010.01.006
  22. Jorge JH, Giampaolo ET, Machado AL, et al. Cytotoxicity of denture base acrylic resins: a literature review. J Prosthet Dent 2003;90(2):190–193. DOI: 10.1016/s0022-3913(03)00349-4
  23. Chaves CA, Machado AL, Vergani CE, et al. Cytotoxicity of denture base and hard chairside reline materials: a systematic review. J Prosthet Dent 2012;107(2):114–127. DOI: 10.1016/S0022-3913(12)60037-7
  24. Lunder T, Rogl-Butina M. Chronic urticaria from an acrylic dentalprosthesis. Contact Dermatitis 2000;43(4):232–233. DOI: 10.1034/j.1600-0536.2000.043004223.x
  25. Martin N, Bell HK, Longman LP, et al. Orofacial reaction to methacrylates in dental materials: a clinical report. J Prosthet Dent 2003;90(3):225–227. DOI: 10.1016/s0022-3913(03)00331-7
  26. Kedjarune U, Charoenworaluk N, Koontongkaew S. Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J 1999;44(1):25–30. DOI: 10.1111/j.1834-7819.1999.tb00532.x
  27. Harrison A, Huggett R. Effect of the curing cycle on residual monomer levels of acrylic resin denture base polymers. J Dent 1992;20(6):370–374. DOI: 10.1016/0300-5712(92)90031-7
  28. Goiato MC, Freitas E, dos Santos D, et al. Acrylic resin cytotoxicity for denture base - Literature Review. Adv Clin Exp Med 2015;24(4):679–686.
  29. Ajay R, Suma K, Ali SA. Monomer modifications of denture base acrylic resin: a systematic review and meta-analysis. J Pharm Bioallied Sci 2019;11(Suppl 2):S112–S1S125. DOI: 10.4103/JPBS.JPBS_34_19
  30. Ajay R, Rakshagan V, Ganeshkumar R, et al. Synthesis and characterization of a ring-opening oxaspiro comonomer by a novel catalytic method for denture base resins. J Pharm Bioallied Sci 2021;13(Suppl 1):S521–S526. DOI: 10.4103/jpbs.JPBS_524_20
  31. Ajay R, Rakshagan V, Sreevarun M, Bhuvaneshkumar D, et al. Copolymerization of ring-opening oxaspiro comonomer with denture base acrylic resin by free radical/cationic hybrid polymerization. J Pharm Bioall Sci 2021;13:S527–S531. DOI: 10.4103/jpbs.JPBS_582_20
  32. Att W, Yamada M, Kojima N, et al. N-acetyl cysteine prevents suppression of oral f ibroblast function on poly (methyl methacrylate) resin. Acta Biomater 2009;5:391–398. DOI: 10.1016/j.actbio.2008.07.021
  33. Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, et al. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine 2012;7:4777–4786. DOI: 10.2147/ijn.s32391
  34. Segerström S, Sandborgh-Englund G, Ruyter EI. Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implant suprastructures. Eur J Oral Sci 2011;119(3):246–252. DOI: 10.1111/j.1600-0722.2011.00826.x
  35. Dawlee S, Jayakrishnan A, Jayabalan M. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications. J Mater Sci Mater Med 2009;20:243–250. DOI: 10.1007/s10856-008-3557-4
  36. Cochis A, Fracchia L, Martinotti MG, et al. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:755–761. DOI: 10.1016/j.oooo.2011.11.004
  37. Regis RR, Della Vecchia MP, Pizzolitto AC, et al. Antimicrobial properties and cytotoxicity of an antimicrobial monomer for application in prosthodontics. J Prosthodont 2012;21(4):283–290. DOI: 10.1111/j.1532-849X.2011.00815.x
  38. Ata SO, Yavuzyilmaz H. In vitro comparison of the cytotoxicity of acetal resin, heat-polymerized resin, and autopolymerized resin as denture base materials. J Biomed Mater Res B Appl Biomater 2009;91: 905–909. DOI: 10.1002/jbm.b.31473
  39. Ajay R, Suma K, Sasikala R, et al. Chemical structure and physical properties of heat-cured poly(methyl methacrylate) resin processed with cycloaliphatic comonomer: an in vitro study. J Contemp Dent Pract 2020;21(3):285–290. DOI: 10.5005/jp-journals-10024-2769
  40. Bailey WJ, Endo T. Synthesis of monomers that expand on polymerization. Synthesis and polymerization of 3,9– dimethylene– 1,5,7,11– tetraoxaspiro[5.5] undecane. J Polym Sci Pol Chem 1976;14:1735–1741. DOI: 10.1002/macp.1975.021761011
  41. Horie K, Otagawa M, Muraaoka M, et al. Calorimetric investigation of polymerization reaction. V. Crosslinked copolymerization of methyl methacrylate with ethylene dimethacrylate J Polym Sci 1975;13: 445–486. DOI: 10.1002/POL.1975.170130217
  42. Moharram MA, Abdel Nour KN, Abdel Hakeem N, et al. Effect of crosslinking agents on the molecular properties of denture baseresins. J Mater Sci 1992;27:6041–6046. DOI: 10.1007/BF01133747
  43. Viljanen EK, Skrifvars M, Vallittu PK. Dendrimer/methyl methacrylate co-polymers: residual methyl methacrylate and degree of conversion. J Biomater Sci Polym Ed 2005;16:1219–1231. DOI: 10.1163/156856205774269566
  44. Schmalz G. Use of cell cultures for toxicity testing of dental materials – advantages and limitations. J Dent 1994;22(2):S6–S11. DOI: 10.1016/0300-5712(94)90032-9
  45. Supervision of Medical Devices Division of the Pharmaceutical Affairs Bureau. Guideline of physical, chemical and biological study for dental materials. Japan Association for the Advancement of Medical Equipment (JAAME), Tokyo; 1997, pp. 40–41.
  46. Jorge JH, Giampaolo ET, Vergani CE, et al. Biocompatibility of denture base acrylic resins evaluated in culture of L929 cells. Effect of polymerization cycle and post-polymerization treatments. Gerodontology 2007;24:52–57. DOI: 10.1111/j.1741-2358.2007.00146.x
  47. Sheridan PJ, Koha S, Ewoldsen NO, et al. Cytotoxicity of denture base resins. Int J Prosthodont 1997;10(1):73–77. DOI: 10.1016/s0022-3913(03)00349-4
  48. Saravi ME, Vojdani M, Bahrani F.Evaluation of cellular toxicity of three denture base acrylic resins. J Dent (Tehran) 2012;9(4):180–188. PMCID: PMC3536452.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.