World Journal of Dentistry

Register      Login

VOLUME 12 , ISSUE 4 ( July-August, 2021 ) > List of Articles

ORIGINAL RESEARCH

Role of Panoramic Radiography in the Identification of Dental Anomalies and Disturbed Development of the Dentition

Cabov Tomislav, Legovic Asja, Cabov Ercegovic Lucija, Zulijani Ana

Keywords : Children, Dental anomalies, Developmental disorder, Panoramic radiograph, Prevalence

Citation Information : Tomislav C, Asja L, Lucija CE, Ana Z. Role of Panoramic Radiography in the Identification of Dental Anomalies and Disturbed Development of the Dentition. World J Dent 2021; 12 (4):271-277.

DOI: 10.5005/jp-journals-10015-1836

License: CC BY-NC 4.0

Published Online: 15-07-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: This study aimed to determine the prevalence of dental anomalies and impaired dentition development by analyzing panoramic radiographs. Materials and methods: The study included 1,317 orthopantomograms of children treated in an orthodontic practice. Regarding the development of the dentition, they were divided into five stages: (1) Eruption of the first permanent molars. (2) Replacement of the incisors. (3) Completed replacement of the incisors. (4) Replacement in the supporting zones. (5) Completed replacement of the teeth of the supporting zones. Results: Dental anomalies were found in 9.5% of the subjects. In the first stage, M1 was found to resorb the crown of m2 in 7.1% of cases during the eruption. In the second stage, I1 resorbed the adjacent deciduous tooth during the eruption in 17.5% of the cases. In the third stage, impaired development of incisors was observed in 28.9% of cases in the maxilla and in 27.9% in the mandible. In the fourth stage, ectopic position and premature eruption of the germ in segments C-P2 were noted in 20.8% of teeth in the maxilla and 9.7% in the mandible. Late mineralization of P2 and ankylosis of m2 was noted in 3.4% of cases in the maxilla and 6.5% in the mandible. In the fifth stage, 11.9% of M3 germs were ectopically positioned in the maxilla and 29.5% in the mandible, 5.9% of M3 germs were absent in the maxilla, and 6.7% in the mandible. Conclusion: Our study showed a similar incidence of various dental anomalies and disturbed dentition development as reported in the literature. The results of this study confirm that the analysis of orthopantomogram is an important and useful element in the diagnosis and treatment plans for a malocclusion. Clinical significance: Orthopantomogram analysis can be used as a useful element in the diagnosis and treatment plans for a malocclusion.


HTML PDF Share
  1. Akkaya N, Kansu O, Kansu H, et al. Comparing the accuracy of panoramic and intraoral radiography in the diagnosis of proximal caries. Dentomaxillofac Radiol 2006;35(3):170–174. DOI: 10.1259/dmfr/26750940.
  2. Molander B. Panoramic radiography in dental diagnostics. Swed Dent J Suppl 1996;119:1–26.
  3. Molander B, Ahlqwist M, Gröndahl HG. Panoramic and restrictive intraoral radiography in comprehensive oral radiographic diagnosis. Eur J Oral Sci 1995;103(4):191–198. DOI: 10.1111/j.1600-0722.1995.tb00159.x.
  4. Neal JJ, Bowden DE. The diagnostic value of panoramic radiographs in children aged nine to ten years. Br J Orthod 1988;15(3):193–197. DOI: 10.1179/bjo.15.3.193.
  5. Hintze H, Wenzel A, Williams S. Diagnostic value of clinical examination for the identification of children in need of orthodontic treatment compared with clinical examination and screening pantomography. Eur J Orthod 1990;12(4):385–388. DOI: 10.1093/ejo/12.4.385.
  6. Capelli Jr J. Mandibular growth and third molar impaction in extraction cases. Angle Orthod 1991;61(3):223–229. DOI: 10.1043/0003-3219(1991)0612.0.CO;2.
  7. Bjerklin K. Ectopic eruption of the maxillary first permanent molar. An epidemiological, familial, aetiological and longitudinal clinical study. Swed Dent J Suppl 1994;100:1–66.
  8. Thongudomporn U, Freer TJ. Prevalence of dental anomalies in orthodontic patients. Aus Dent J 1998;43(6):395–398.
  9. Cholitgul W, Drummond BK. Jaw and tooth abnormalities detected on panoramic radiographs in New Zeland children aged 10-15 years. N Z Dent J 2000;96(423):10–13.
  10. Stahl F, Grabowski R. Maxillary canine displacement and genetically determined predisposition to disturbed development of the dentition. J Orofac Orthop 2003;64(3):167–177. DOI: 10.1007/s00056-003-0221-y.
  11. Stahl F, Grabowski R, Wigger K. Epidemiological significance of Hoffmeister's “genetically determined predisposition to disturbed development of the dentition”. J Orofac Orthop 2003;64(4):243–255. DOI: 10.1007/s00056-003-0220-z.
  12. Ezoddini AF, Sheikhha MH, Ahmadi H. Prevalence of dental developmental anomalies: a radiographic study. Community Dent Health 2007;24(3):140–144.
  13. Witcher TP, Brand S, Gwilliam JR, et al. Assessment of the anterior maxilla in orthodontic patients using upper anterior occlusal radiographs and dental panoramic tomography: a comparison. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109(5):765–774. DOI: 10.1016/j.tripleo.2009.10.016.
  14. Yeo DK, Freer TJ, Brockhurst PJ. Distortions in panoramic radiographs. Austr Orthod J 2002;18(2):92–98.
  15. Pallikaraki G, Sifakakis I, Gizani S, et al. Developmental dental anomalies assessed by panoramic radiographs in a Greek orthodontic population sample. Eur Arch Paediatr Dent 2019;21(2):223–228. DOI: 10.1007/s40368-019-00476-y.
  16. Altug-Atac AT, Erdem D. Prevalence and distribution of dental anomalies in orthodontic patients. Am J Orthod Dentofacial Orthop 2007;131(4):510–514. DOI: 10.1016/j.ajodo.2005.06.027.
  17. Bäckman B, Wahlin YB. Variations in number and morphology of permanent teeth in 7-year-old swedish children. Int J Paediatr Dent 2001;11(1):11–17. DOI: 10.1046/j.1365-263x.2001.00205.x.
  18. Hamasha AA, Al-Khateeb T. Prevalence of fused and geminated teeth in Jordanian adults. Quintessence Int 2004;35(7):556–559.
  19. Anthonappa RP, King NM, Rabie AB. Prevalence of supernumerary teeth based on panoramic radiographs revisited. Pediatr Dent 2013;35(3):257–261.
  20. Laganà G, Venza N, Borzabadi-Farahani A, et al. Dental anomalies: prevalence and associations between them in a large sample of non-orthodontic subjects, a cross-sectional study. BMC Oral Health 2017;17(1):62. DOI: 10.1186/s12903-017-0352-y.
  21. Vahid-Dastjerdi E, Borzabadi-Farahani A, Mahdian M, et al. Non-syndromic hypodontia in an Iranian orthodontic population. J Oral Sci 2010;52(3):455–461. DOI: 10.2334/josnusd.52.455.
  22. Rakhshan V. Congenitally missing teeth (hypodontia): a review of the literature concerning the etiology, prevalence, risk factors, patterns and treatment. Dent Res J 2015;12(1):1–13. DOI: 10.4103/1735-3327.150286.
  23. Baccetti T. A clinical and statistical study of etiologic aspects related to associated tooth anomalies in number, size, and position. Minerva Stomatol 1998;47(12):655–663.
  24. Baccetti T. Tooth anomalies associated with failure of eruption of first and second permanent molars. Am J Orthod Dentofacial Orthop 2000;118(6):608–610. DOI: 10.1067/mod.2000.97938.
  25. Albashaireh ZS, Khader YS. The prevalence and pattern of hypodontia of the permanent teeth and crown size and shape deformity affecting upper lateral incisors in a sample of Jordanian dental patients. Community Dent Health 2006;3(4):239–243.
  26. Hua F, He H, Ngan P, et al. Prevalence of peg-shaped maxillary permanent lateral incisors: a meta-analysis. Am J Orthod Dentofacial Orthop 2013;144(1):97–109. DOI: 10.1016/j.ajodo.2013.02.025.
  27. Kazanci F, Celikoglu M, Miloglu O, et al. Frequency and distribution of developmental anomalies in the permanent teeth of a Turkish orthodontic patient population. J Dent Sci 2011;6(2):82–89. DOI: 10.1016/j.jds.2011.03.003.
  28. Fekonja A. Prevalence of dental developmental anomalies of permanent teeth in children and their influence on esthetics. J Esthet Restor Dent 2017;29(4):276–283. DOI: 10.1111/jerd.12302.
  29. Kjær I. Can the location of tooth agenesis and the location of initial bone loss seen in juvenile periodontitis be explained by neural developmental fields in the jaws? Acta Odontol Scand 1997;55(1):70–72. DOI: 10.3109/00016359709091945.
  30. Barberia-Leache E, Suarez-Clúa MC, Saavedra-Ontiveros D. Ectopic eruption of the maxillary first permanent molar: characteristics and occurrence in growing children. Angle Orthod 2005;75(4):610–615. DOI: 10.1043/0003-3219(2005)75[610:EEOTMF]2.0.CO;2.
  31. Bjerklin K, Kurol J. Prevalence of ectopic eruption of the maxillary first permanent molar. Swed Dent J 1981;5(1):29–34.
  32. Kimmel NA, Gellin ME, Bohannan HM, et al. Ectopic eruption of maxillary first permanent molars in different areas of the United States. ASDC J Dent Child 1982;49(4):294–299.
  33. Salbach A, Schremmer B, Grabowski R, et al. Correlation between the frequency of eruption disorders for first permanent molars and the occurrence of malocclusions in early mixed dentition. J Orofac Orthop 2012;73(4):298–306. DOI: 10.1007/s00056-012-0083-2.
  34. Bjerklin K, Kurol J, Valentin J. Ectopic eruption of maxillary first permanent molar and association with other tooth and developmental disturbances. Eur J Orthod 1992;14(5):369–375. DOI: 10.1093/ejo/14.5.369.
  35. Chintakanon K, Boonpinon P. Ectopic eruption of the permanent molars: prevalence and etiologic factors. Angle Orthod 1998;68(2):153–160. DOI: 10.1043/0003-3219(1998)0682.3.CO;2.
  36. Schopf P. Indication for and frequency of early orthodontic therapy or interceptive measures. J Orofac Orthop 2003;64(3):186–200. DOI: 10.1007/s00056-003-0234-6.
  37. Legovic M. Health condition of first permanent molars in patients with mixed dentition from a region of Istra. Acta Stomatol Croat 1979;13(2):62–67.
  38. Czeholinski JA, Kahl B, Schwarze CW. Early deciduous tooth loss-the mature or immature eruption of their permanent successors. Fortschr Kieferorthop 1994;55(2):54–60. DOI: 10.1007/BF02174357.
  39. Van der Linden F, Duterloo H. Atlante Dello Sviluppo Della Dentizione Umana. Padova: Ed Piccin; 1983.
  40. Laine T, Hausen H. Space anomalies, missing permanent teeth and orthodontic treatment. Angle Orthodont 1985;55(3):242–250. DOI: 10.1043/0003-3219(1985)0552.0.CO;2.
  41. Proffit WR, Fields Jr HW, Moray LJ. Prevalence of malocclusion and orthodontic treatment need in the United States: estimates from NHANES III survey. Int J Adult Orthodon Orthognath Surg 1998;13(2):97–106.
  42. Thilander B, Pena L, Infante C, et al. Prevalence of malocclusion and orthodontic treatment need in children and adolescents in Bogota, Columbia. An epidemiological study related to different stages of dental development. Eur J Orthod 2001;23(2):153–167. DOI: 10.1093/ejo/23.2.153.
  43. Tausche E, Luck O, Harzer W. Prevalence of malocclusions in the early mixed dentition and orthodontic treatment need. Eur J Orthod 2004;26(3):237–244. DOI: 10.1093/ejo/26.3.237.
  44. Borzabadi-Farahani A, Borzabadi-Farahani A, Eslamipour F. Malocclusion and occlusal traits in an urban Iranian population. An epidemiological study of 11- to 14-year-old children. Eur J Orthod 2009;31(5):477–484. DOI: 10.1093/ejo/cjp031.
  45. Yu X, Zhang H, Sun L, et al. Prevalence of malocclusion and occlusal traits in the early mixed dentition in Shanghai, China. Peer J 2019;7:e6630. DOI: 10.7717/peerj.6630.
  46. Keski-Nisula K, Lehto R, Lusa V, et al. Occurrence of malocclusion and need of orthodontic treatment in early mixed dentition. Am J Orthod Dentofacial Orthop 2003;124(6):631–638. DOI: 10.1016/j.ajodo.2003.02.001.
  47. Gelgör IE, Karaman AI, Ercan E. Prevalence of malocclusion among adolescents in central anatolia. Eur J Dent 2007;1(3):125–131. DOI: 10.1055/s-0039-1698327.
  48. Bässler-Zeltman S, Kretschmer I, Göz G. Malocclusion and the need for orthodontic treatment in 9-year old children. Survey based on the Swedish National Board of Health and Welfare Scale. J Orofac Orthop 1998;59(4):193–201. DOI: 10.1007/BF01579163.
  49. Kahl B, Schwarze CW. Late mineralisation of premolars in relation to orthodontic diagnosis and therapy. Fortschr Kieferorthop 1986;47(3):234–244. DOI: 10.1007/BF02168848.
  50. Stemm RM. The frequency of malposed lower premolar teeth. Angle Orthod 1997;41(2):157–158.
  51. Crescini A. Trattamento Chirurgico-Ortodontico Dei Canini Inclusi. Bologna: Martina Ed; 1998.
  52. Schulze CH. Anomalien und Missbildungen der menschlichen Zähne. Berlin-Chicago-London-Säo Paulo-Tokio: Quintessenz; 1987.
  53. Kurol J. Infraocclusion of primary molars: an epidemiological and familial study. Community Dent Epidemiol 1981;9(2):94–102. DOI: 10.1111/j.1600-0528.1981.tb01037.x.
  54. Krakowiak FJ. Ankylosed primary molars. ASDC J Dent Child 1978;45(4):288–292.
  55. Jenkins FR, Nichol RE. Atypical retention of infraoccluded primary molars with permanent successor teeth. Eur Arch Paediatr Dent 2008;9(1):51–55. DOI: 10.1007/BF03321597.
  56. Shalish M, Peck S, Wasserstein A, et al. Increased occurrence of dental anomalies associated with infraocclusion of deciduous molars. Angle Orthod 2010;80(3):440–445. DOI: 10.2319/062609-358.1.
  57. Al-Abdallah M, AlHadidi A, Hammad M, et al. Prevalence and distribution of dental anomalies: a comparison between maxillary and mandibular tooth agenesis. Am J Orthod Dentofacial Orthop 2015;148(5):793–798. DOI: 10.1016/j.ajodo.2015.05.024.
  58. Hattab FN. Positional changes and eruption of impacted mandibular third molars in young adults. A radiographic 4-years follow-up study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;84(6):604–608. DOI: 10.1016/s1079-2104(97)90359-0.
  59. Steinhardt J, Mertins J, Mertins H. Röntgenologische Befunde zur Keimlage und zum Durchbruch der dritten Molaren. Forschr Kieferorthop 1988;49(2):152–159. DOI: 10.1007/BF02163374.
  60. Behbehani F, Årtun J, Thalib L. Prediction of mandibular third-molar impaction in adolescent orthodontic patients. Am J Orthod Dentofacial Orthop 2006;130(1):47–55. DOI: 10.1016/j.ajodo.2006.03.002.
  61. Jung YH, Cho BH. Radiographic evaluation of third molar development in 6- to 24-year-olds. Imaging Sci Dent 2014;44(3):185–191. DOI: 10.5624/isd.2014.44.3.185.
  62. Sujon MK, Alam MK, Rahman SA. Prevalence of third molar agenesis: associated dental anomalies in non-syndromic 5923 patients. PLoS ONE 2016;11(8):e0162070. DOI: 10.1371/journal.pone.0162070.
  63. Garn SM, Lewis AB. The gradient and pattern of crown-size reduction in simple hypodontia. Angle Orthod 1970;40(1):51–58. DOI: 10.1043/0003-3219(1970)0402.0.CO;2.
  64. Celikoglu M, Bayram M, Nur M. Patterns of third-molar agenesis and associated dental anomalies in an orthodontic population. Am J Orthod Dentofacial Orthop 2011;140(6):856–860. DOI: 10.1016/j.ajodo.2011.05.021.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.