World Journal of Dentistry

Register      Login

VOLUME 12 , ISSUE 3 ( May-June, 2021 ) > List of Articles

REVIEW ARTICLE

Displacement of Mini-implants under Orthodontic Force Loading: A Systematic Review

Navaneethan Ramasamy, Jong-Moon Chae

Citation Information :

DOI: 10.5005/jp-journals-10015-1829

License: CC BY-NC 4.0

Published Online: 00-06-2021

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Aim and objective: To critically evaluate the displacement of orthodontic mini-implants (MIs) under orthodontic force loading. Materials and methods: This trial has been registered to PROSPERO and the registration number is CRD42020150084. An electronic search was done and two independent authors (SS and AKS) screened the initial titles and abstracts to find all the eligible studies in PubMed, Cochrane library, Google Scholar Beta, LILACS from 1950 until June 26, 2020, using the terms orthodontic treatment, temporary anchorage devices, loading behavior, reactive force, stability, primary displacement, migration, dislodgement, loss of anchorage drift, primary stability, loosening, drift characteristics, movement, deflections, biomechanical effect, and randomized controlled trial. The assessment of articles was done using selection criteria. According to the PICOS (population, intervention, comparison, outcome, study design) criteria, the inclusion criteria were worked out. This review took into consideration only randomized and non-randomized trials, and prospective clinical studies were included. We used standard methodological procedures for selecting studies, collecting data. The risk of bias was evaluated and findings were synthesized. Results: Of the 28 initial records identified, a total of 12 studies were included in this review. One study had a poor risk of bias and the remaining 11 studies had moderate to good overall risk. Of the parameters evaluated for displacement, mobility, root approximation of the MIs, the results showed that there was a displacement of MIs but clinically not often relevant to cause failure or complication in treatment. Conclusion: From this review, it can be concluded that there is a displacement of the MI under orthodontic force loading. The primary displacement of the MIs did not appear to be clinically relevant to failure and mobility. Clinical significance: There is a primary displacement that occurs during the loading of MIs and even in some cases secondary displacement. The position and direction of insertion of the MIs should be planned to keep in mind the migration in such a way that it does not interfere with the orthodontic tooth movement and vital structures.


HTML PDF Share
  1. Ohmae M, Saito S, Morohashi T, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofac Orthoped 2001;119(5):489–497. DOI: 10.1067/mod.2001.114300.
  2. Mortensen MG, Buschang PH, Oliver DR, et al. Stability of immediately loaded 3- and 6-mm miniscrew implants in beagle dogs—a pilot study. Am J Orthod Dentofac Orthoped 2009;136(2):251–259. DOI: 10.1016/j.ajodo.2008.03.016.
  3. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763–767.
  4. Favero L, Brollo P, Bressan E. Orthodontic anchorage with specific fixtures: related study analysis. Am J Orthod Dentofac Orthoped 2002;122(1):84–94. DOI: 10.1067/mod.2002.124870.
  5. Hedayati Z, Hashemi SM, Zamiri B, et al. Anchorage value of surgical titanium screws in orthodontic tooth movement. Int J Oral Maxillofac Surg 2007;36(7):588–592. DOI: 10.1016/j.ijom.2006.10.020.
  6. Yanosky MR, Holmes JD. Mini-implant temporary anchorage devices: orthodontic applications. Compend Contin Educ Dent 2008;29(1):12–20.
  7. Motoyoshi M, Yano S, Tsuruoka T, et al. Biomechanical effect of abutment on stability of orthodontic mini‐implant: a finite element analysis. Clin Oral Implants Res 2005;16(4):480–485. DOI: 10.1111/j.1600-0501.2005.01130.x.
  8. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofac Orthoped 2004;126(1):42–47. DOI: 10.1016/j.ajodo.2003.06.018.
  9. Chatzigianni A, Keilig L, Reimann S, et al. Effect of mini-implant length and diameter on primary stability under loading with two force levels. Eur J Orthod 2011;33(4):381–387. DOI: 10.1093/ejo/cjq088.
  10. Min KI, Kim SC, Kang KH, et al. Root proximity and cortical bone thickness effects on the success rate of orthodontic micro-implants using cone beam computed tomography. Angle Orthod 2012;82(6):1014–1021. DOI: 10.2319/091311-593.1.
  11. Jung YR, Kim SC, Kang KH, et al. Placement angle effects on the success rate of orthodontic microimplants and other factors with cone-beam computed tomography. Am J Orthod Dentofac Orthoped 2013;143(2):173–181. DOI: 10.1016/j.ajodo.2012.09.011.
  12. Lee MY, Park JH, Kim SC, et al. Bone density effects on the success rate of orthodontic microimplants evaluated with cone-beam computed tomography. Am J Orthod Dentofac Orthoped 2016;149(2):217–224. DOI: 10.1016/j.ajodo.2015.07.037.
  13. Park JH, Chae JM, Bay RC, et al. Evaluation of factors influencing the success rate of orthodontic microimplants using panoramic radiographs. Korean J Orthod 2018;48(1):30. DOI: 10.4041/kjod.2018.48.1.30.
  14. Pittman JW, Navalgund A, Byun SH, et al. Primary migration of a mini-implant under a functional orthodontic loading. Clin Oral Investigat 2014;18(3):721–728. DOI: 10.1007/s00784-013-1045-9.
  15. Lee YK, Kim JW, Baek SH, et al. Root and bone response to the proximity of a mini-implant under orthodontic loading. Angle Orthod 2010;80(3):452–458. DOI: 10.2319/070209-369.1.
  16. Wang YC, Liou EJ. Comparison of the loading behavior of self-drilling and predrilled miniscrews throughout orthodontic loading. Am J Orthod Dentofac Orthoped 2008;133(1):38–43. DOI: 10.1016/j.ajodo.2006.01.042.
  17. Alves Jr M, Baratieri C, Nojima LI. Assessment of mini‐implant displacement using cone beam computed tomography. Clin Oral Implants Res 2011;22(10):1151–1156. DOI: 10.1111/j.1600-0501.2010.02092.x.
  18. Calderón JH, Valencia RM, Casasa AA, et al. Biomechanical anchorage evaluation of mini-implants treated with sandblasting and acid etching in orthodontics. Implant Dentis 2011;20(4):273–279. DOI: 10.1097/ID.0b013e3182167308.
  19. El-Beialy AR, Abou-El-Ezz AM, Attia KH, et al. Loss of anchorage of miniscrews: a 3-dimensional assessment. Am J Orthod Dentofac Orthoped 2009;136(5):700–707. DOI: 10.1016/j.ajodo.2007.10.059.
  20. Kinzinger G, Gülden N, Yildizhan F, et al. Anchorage efficacy of palatally-inserted miniscrews in molar distalization with a periodontally/miniscrew-anchored distal jet. J Orofac Orthopedics/Fortschritte der Kieferorthopädie 2008;69(2):110–120. DOI: 10.1007/s00056-008-0736-3.
  21. Liu H, Lv T, Wang NN, et al. Drift characteristics of miniscrews and molars for anchorage under orthodontic force: 3-dimensional computed tomography registration evaluation. Am J Orthod Dentofac Orthoped 2011;139(1):e83–e89. DOI: 10.1016/j.ajodo.2010.07.018.
  22. Łyczek J, Kawala B, Antoszewska-Smith J. Influence of antibiotic prophylaxis on the stability of orthodontic microimplants: a pilot randomized controlled trial. Am J Orthod Dentofac Orthoped 2018;153(5):621–631. DOI: 10.1016/j.ajodo.2017.11.025.
  23. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofac Orthoped 2006;130(1):18–25. DOI: 10.1016/j.ajodo.2004.11.032.
  24. Son S, Motoyoshi M, Uchida Y, et al. Comparative study of the primary stability of self-drilling and self-tapping orthodontic miniscrews. Am J Orthod Dentofac Orthoped 2014;145(4):480–485. DOI: 10.1016/j.ajodo.2013.12.020.
  25. Ganzer N, Feldmann I, Bondemark L. Anchorage reinforcement with miniscrews and molar blocks in adolescents: a randomized controlled trial. Am J Orthod Dentofac Orthoped 2018;154(6):758–767. DOI: 10.1016/j.ajodo.2018.07.011.
  26. Migliorati M, Drago S, Gallo F, et al. Immediate versus delayed loading: comparison of primary stability loss after miniscrew placement in orthodontic patients—a single-centre blinded randomized clinical trial. Eur J Orthod 2016;38(6):652–659. DOI: 10.1093/ejo/cjv095.
  27. Moon CH, Lee DG, Lee HS, et al. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod 2008;78(1):101–106. DOI: 10.2319/121706-515.1.
  28. Scannell J, Measurement of applied force to dislodge orthodontic temporary anchorage devices (Doctoral dissertation, University of Birmingham). 2012.
  29. Wilmes B, Drescher D. Impact of insertion depth and predrilling diameter on primary stability of orthodontic mini-implants. Angle Orthod 2009;79(4):609–614. DOI: 10.2319/071708-373.1.
  30. Pickard MB, Dechow P, Rossouw PE, et al. Effects of miniscrew orientation on implant stability and resistance to failure. Am J Orthod Dentofac Orthoped 2010;137(1):91–99. DOI: 10.1016/j.ajodo.2007.12.034.
  31. Brettin BT, Grosland NM, Qian F, et al. Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofac Orthoped 2008;134(5):625–635. DOI: 10.1016/j.ajodo.2007.01.031.
  32. Jang HJ, Kwon SY, Kim SH, et al. Effects of washer on the stress distribution of mini-implant: a finite element analysis. Angle Orthod 2012;82(1):137–144. DOI: 10.2319/021411-107.1.
  33. Singh S, Mogra S, Shetty VS, et al. Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system. Am J Orthod Dentofac Orthoped 2012;141(3):327–336. DOI: 10.1016/j.ajodo.2011.07.022.
  34. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343(oct18 2):d5928. DOI: 10.1136/bmj.d5928.
  35. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25(9):603–605. DOI: 10.1007/s10654-010-9491-z.
  36. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016. 355. DOI: 10.1136/bmj.i4919.
  37. GRADEpro GD. GRADEpro guideline development tool [software]. McMaster University 2015. 435.
  38. Heneghan C. EBM resources on the new CEBM website. BMJ Evidence-Based Med 2009;14(3):67. DOI: 10.1136/ebm.14.3.67.
  39. Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(5):e6–e15. DOI: 10.1016/j.tripleo.2006.11.022.
  40. Vikram NR, Prabhakar R, Kumar SA, et al. Ball headed mini implant. J Clin Diagnos Res 2017;11(1):ZL02. DOI: 10.7860/JCDR/2017/24358.9240.
  41. Çehreli S, Arman-Özçırpıcı A. Primary stability and histomorphometric bone-implant contact of self-drilling and self-tapping orthodontic microimplants. Am J Orthod Dentofac Orthoped 2012;141(2):187–195. DOI: 10.1016/j.ajodo.2011.07.020.
  42. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthod Orthognat Surg 1998;13(3):201–209.
  43. Motoyoshi M, Yoshida T, Ono A, et al. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007;22(5):779–784.
  44. Türköz Ç, Ataç MS, Tuncer C, et al. The effect of drill-free and drilling methods on the stability of mini-implants under early orthodontic loading in adolescent patients. Eur J Orthod 2011;33(5):533–536. DOI: 10.1093/ejo/cjq115.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.